▶XFELOはどのように実現すべきか

日本原子力研究開発機構 (JAEA) (AEA) 高エネルギー加速器研究機構 (KEK) (KEK)

先端放射光源に関する研究会 — 第3世代放射光リング/SASE-FELを越えて 日本が選択すべき放射光源ロードマップに向けて(1)

2014年11月22日、自然科学研究機構岡崎コンファレンスセンター

5年前の研究会にて

X線光学素子用ダイヤモンド 結晶の現状と展望

共振器型XFEL (XFEL-O)の原理と光源特性

羽島良一 日本原子力研究開発機構 ERL光量子源開発研究グループ

> ERLサイエンスワークショップ 2009年7月10日

http://pfwww.kek.jp/pf-seminar/ERL/workshop/

ERLサイエンスワークショップ @KEK 7/10/2009

玉作 賢治 理研播磨

- XFELO の概要
- ERL に併設(7 GeV)の例
- 電子エネルギーを下げる
 - 。バンチ圧縮
 - 高調波発振
- SASE-XFELに併設の可能性
 - LCLS-II
 - European XFEL
- 要素技術

共振器型X線FELの提案

R. Colella, A. Luccio, Opt. Comm. (1984)

蓄積リングの電子ビームで 2-3ÅのXFELを提案。

Z. Huang, D. Ruth Phys. Rev. Lett. (2006).

SLAC-LCLSの電子ビームパラメータで 再生増幅型XFELを提案。(10パス程度で飽和)

X線領域で利用可能な "反射率の高い" ミラー
 高品質、かつ、"高繰り返し" の電子ビーム

この両者がそろわない限り、実現は不可能!

K-J. Kimらによる共振器型X線FELの提案

Al₂O₃によるBragg反射(14.3keV)

SASE-XFELとXFELOの比較

XFEL- Oscillator

Bragg反射の位相シフトを含んだ計算 FEL発振に伴うX線パルス波形の変化

Darwin curve に基づく位相シフトを考慮 共振器長 δL=-100μm

パルスの増幅と狭帯域化が同時に起こる。 飽和後は Gaussian-like な時間波形

共振器の具体的な配置

K. J. Kim et al., PRL<u>100</u>, 244802 (2008).

K. J. Kim & Y. Shvyd'ko, PR-ST<u>12</u>, 030703 (2009).

<u>サファイア</u>を使った共振器 ③ 広いエネルギー範囲をカバー × 結晶性 × 反射率

<u>ダイヤモンド</u>とミラーを使った共振器

×離散的なエネルギーでしか機能しない ☺ 結晶性 ☺ 反射率

4枚の<u>ダイヤモンド</u>を使った共振器
③ エネルギー選択の自由度が比較的高い
④ 結晶性
④ 反射率
× 高い角度安定性(nrad以下)が必要

玉作(2009)から抜粋 8

XFELOにおける波長の可変性は?

Bragg ミラーの角度を調節することで K-J. Kim et al., PR ST-AB 12, 030703 (2009). 波長可変を実現できる

FIG. 5. (Color) Closed circles: relative energy width $\epsilon_H^{(s)}$ of all allowed Bragg reflections in diamond (C) crystals, in the symmetric scattering geometry, for Bragg energies E_H up to 25 keV. Open circles: the same for the peak reflectivity. Calculations are performed with dynamical theory of x-ray diffraction in thick crystals as described in [11]. Debye-Waller factors are calculated using 2200 K Debye temperature.

XFELOの発振帯域は何で決まるのか?

TABLE I. Performance of X-FELO. See text for explanation of symbols.

λ_1 (Å)	E (GeV)	<i>Q</i> (pC)	K	λ_U (cm)	N_U	Z_R (m)	$g_{\rm th}~(\%)$	g_{sim} (%)	r (%)	P _{sat} (MW)
1	7	19	1.414	1.88	3000	10	26	28	90	19
1	7	40	1.414	1.88	3000	12	55	66	83	21
0.84	7.55	19	1.414	1.88	3000	12	26	28	90	20
0.84	10	19	2	2.2	2800	10	42	45	83	18

K-J. Kim ら PRL 100, 244802 (2008)

7-10 GeV, 19-40 pC の電子ビーム → ERL と近いパラメータ

XFELO with 5 and 7-GeV ERLs

small-signal FEL gain	0.3		analytical estimation				1Å X-FELO				
	0.25	-	of small-signal FEL gain		-	Energy	5 GeV	7 GeV			
			1	•			charge	20 pC	\rightarrow		
	0.2		7 GeV	-	σ_{t}	2 ps	\rightarrow				
	0.15		5 GeV ではゲインが足りない 5 GeV				σ _E /E	1e-4	\rightarrow		
							a _w	0.59	1.0		
							λ_{u}	1.43 cm	1.88 cm		
	0.1	-					N _u	3000	\rightarrow		
							β*=Ζ _R	10 m	\rightarrow		
	0.05					-	ε _n	0.1 mm-mrad	\rightarrow		
							gain	14 %	22 %		
	0	0	1 0.15	0.2 ().25	0.3					
			normalized emitt	ance (mm	-mrad)						
			The above calculator	ations are gives 1.4 t	based or imes larg	n a Ha ger FE	albach-ty EL gain.	/pe undulato	r.		

Velocity bunching in an ERL main linac

Velocity bunching for a SASE-FEL injector L. Serafini and M. Ferrario, AIP-Porc. (2001)

Velocity bunching for an ERL light source H. lijima, R. Hajima, NIM-A557 (2006).

Velocity bunching for an X-FELO R. Hajima, N. Nishimori, FEL-2009

- (1) no additional component is required
- (2) only 2-3% SCAs are used for the velocity bunching
- (3) residual energy spread is smaller than magnetic compression
- (4) moderate emittance growth for low bunch charge

Gain reduction by bandwidth mismatch

14

9

Enhancement of the FEL gain by velocity bunching

Significant enhancement of the FEL gain by velocity bunching. Gain~40% is possible even with emittance growth during the bunching.

高 調 波 による XFELO

J-H. Dai, H. Deng, Z. Dai, Phys. Rev. Lett. 108, 034802 (2012).

アンジュレータ間の位相シフトを 適切に選んで、高調波のみを発振

3.5 GeV で 1 Åの XFELO

TABLE I. The main parameters of harmonic lasing XFELO.

Parameters	Third harmonic	Fifth harmonic
Crystal Bragg energy $E_{\rm H}$	12.42 keV	20.71 keV
Phase jump $\Delta \varphi$	$4\pi/3$	$6\pi/5$
Undulator period λ_u	15 mm	15 mm
Undulator number N_u	1200	1200
Undulator parameter K	1.3244	1.3244
Beam energy E	3.5 GeV	3.5 GeV
Slice energy spread σ	100 keV	100 keV
Beam peak current I	20 A	100 A
Slice emittance ε_n	0.083 µm-rad	0.083 μ m-rad
Single-pass gain g_h	65%	72%
Total cavity reflection r	80%	80%
Cavity length L_c	150 m	150 m
Bragg crystal	C(4,4,4)	C(5,5,9)
FWHM spectral width	5.5 meV	24.6 meV
FWHM temporal width	463 fs	107 fs
Photons/pulse	$0.86 imes 10^{8}$	$0.24 imes10^8$
Output peak power	0.35 MW	0.74 MW

LCLS-II に併設の提案

17

Harmonic XFELO performance (R. Lindberg,

with a new code with exact total energy conservation)

European XFEL に併設の提案

マクロパルスモード SASE-FEL で使用した後の電子

J. Zemela et al., FEL-2012

			マクロパルス内て	『飽和	spent beam		
beam energy E _B	GeV	14.5					
bunch charge q	nC	1.0	rms slice energy spread $\sigma_{\rm E}$	MeV	0.45	(10.0)	
bunch length (rms) $t_{\rm B}$	fs	75.6	detuning parameter η	$\cdot 10^{-4}$	0	6.36	
peak current I _A	kA	4.9	gain per passage		1.1	0.105	
normalized emittance ε_n	$\mathrm{mm}\mathrm{mrad}$	1.0	round-trips to saturation		26	190	
slice energy spread $\sigma_{\rm E}$	MeV	0.45 resp. 10	photon pulse energy $E_{\rm P}$	μJ	286	211	
energy chirp E_{Chirp}	MeV	10.0	rms photon pulse length $t_{\rm P}$	fs	42.8	52.2	
beta function $\beta_{\mathbf{x},\mathbf{y}}$ at ω_0	m	6.0	relative spectral width f_{rel}	$\cdot 10^{-7}$	8.17	7.6	
radiation wavelength λ_{R}	nm	0.1029	time bandwidth product	10	0.64	0.73	
undulator length $L_{\rm U}$	m	15.0	photon beam size at $\omega_0 \sigma$	um	1	4.0	
undulator periode $\lambda_{\rm U}$	m	0.03	photon beam size at $\omega_0 \ \sigma_{\omega_0}$	μιμ	1.	4.0 0.0	
cavity length L_{Cav}	m	66.62	photon beam size at $L_1 \sigma_{L1}$	μιι	3	9.2	
focal length f	m	18.82	opening angle $\theta_{\rm R}$	µrad	2	.33	
round-trip reflectivity R_{Cav}	%	87.5	couple out photon per pulse	$\cdot 10^9$	5.93	4.37	
output coupling T_{Cav}	%	4	peak brilliance PB	$B \cdot 10^{34}$	1.1	0.69	

4. 5 MHz x 2700 bunches

要素技術 – 電子銃、加速器

電子ビーム

10-50 pC, 1-10 MHz, < 0.2 mm-mrad

加速器

超伝導、CW、4-7 GeV、 <1 mA

ERL、CW-FEL 用の電子銃、加速器がそのまま利用可能

要素技術 – X線共振器 ^{K.-J. Kim et al.,} *Diamond Crystal is well-Suited for XFELO*

どのように実現するか?

- ユーザーの強い要求が前提
- 加速器コンポーネント
 - 。現在進行中の研究開発で、ほぼ実現
- •X線共振器
 - 国内で具体的な活動はない?
 - 潜在的な技術、研究者はいるはず
- ・装置の建設
 - 他の光源と組み合わせて設置