回折限界を目指す光源リングとSPring-8-II計画

下崎義人(JASRI / SPring-8)

Agenda

- 1 最初に(エミッタンスについて、など)
- 2 「回折限界を目指すリング(DLSR、USR)」の紹介
- 3 現在のSPring-8について
- 4 SPring-8-II計画の紹介
- 5 サマリー

2014年11月21日 先端放射光源に関する研究会

回折限界を目指す光源リングとSPring-8-II計画

下崎義人(JASRI / SPring-8)

Agenda

- 1 最初に(エミッタンスについて、など)
- 2 「回折限界を目指すリング(DLSR、USR)」の紹介
- 3 現在のSPring-8について
- 4 SPring-8-II計画の紹介

5 サマリー

2014年11月21日 先端放射光源に関する研究会

<u>最初に(1/5):電子ビームのエミッタンスについて</u>

<u>最初に(2/5):ラティス関数について</u>

ラティス関数:加速器の磁石配置(ラティスと呼ぶ)で決まる関数

β:ベータ関数 D:分散関数

実空間での電子ビームサイズ $\sigma_e = \sqrt{\epsilon\beta + D^2\delta^2}$

<u>最初に(3/5):放射光の質を表すパラメータ</u>

平均輝度:フラックスを放射光の実効サイズで割ったもの

- $\Sigma \Sigma'$:放射光の実効エミッタンス
- コヒーレント比:放射光の実効サイズと光子サイズの比

$$p_{x} = \frac{\sigma_{p} \sigma'_{p}}{\Sigma_{x} \Sigma'_{x}}, \qquad p_{y} = \frac{\sigma_{p} \sigma'_{p}}{\Sigma_{y} \Sigma'_{y}}$$

ユーザーが求めるものによって 加速器の設計は、たぶん変わる(得手、不得手)

今回は、蓄積型で輝度とコヒーレンスに特化した加速器のお話

- 蓄積型の特徴: 平衡状態に達した電子ビームから 放射光を生成する(再現性が高い)。
 - One-Pass型に比べると 電子のエミッタンスが大きい。

→ 回折限界リングでエミッタンスを下げる (今回のお話)

回折限界を目指す光源リングとSPring-8-II計画

下崎義人(JASRI / SPring-8)

Agenda

- 1 最初に(エミッタンスについて、など)
- 2 「回折限界を目指すリング(DLSR、USR)」の紹介
- 3 現在のSPring-8について
- 4 SPring-8-II計画の紹介
- 5 サマリー

2014年11月21日 先端放射光源に関する研究会

Diffraction Limited Storage Ring (DLSR)

$$\mathcal{E} = \frac{\lambda}{4\pi}$$

まで下げた放射光リング

回折限界まで電子ビームの エミッタンスを下げると、 輝度・フラックス密度が飽和する

Ultimate Storage Ring (USR)

<u>Sub-nm.radエミッタンスリングの計画</u> R.Hettel, Proc. of IPAC2014, MOXBA01.

Facility	E (GeV)	C (m)	Latice	ε (pm.rad)
NSLS-II (USA)	3	792	DBA + D.W.	600 (コミッショニング中)
MAX IX (Sweden)	3	528	7BA	326(建設中)
Sirius (Brazil)	3	518	5BA	280(建設中)
ESRF-Upgrade (France)	6	844	7BA	150(建設決定)
APS-Upgrade (USA)	6	1104	7BA	147
SPring-8-II (Japan)	6	1436	5BA	100
ALS-Upgrade (USA)	1.9	195	9BA	100
BAPS (China)	5	1500		51-100
TauUSR (USA)	9	6280	7BA	3

D.W.: Damping Wiggler

<u>既存の施設と建設・計画中の施設の比較</u>

平衡エミッタンスの式

$$\varepsilon_{nat} = C_q \frac{\gamma^2 \langle H/\rho^3 \rangle}{J_x \langle 1/\rho^2 \rangle} \propto \frac{\gamma^2 \theta^3}{J_x}$$

- γ : Lorentz factor
- θ : Bending angle
- ρ : Bending radius
- H : H-function
- J_x : Damping partition number

<u>既存の施設と建設・計画中の施設の比較</u>

平衡エミッタンスの式

$$\varepsilon_{nat} = C_q \frac{\gamma^2 \langle H/\rho^3 \rangle}{J_x \langle 1/\rho^2 \rangle} \propto \frac{\gamma^2 \theta^3}{J_x}$$

- γ : Lorentz factor
- θ : Bending angle
- ρ : Bending radius
- H : H-function
- J_x : Damping partition number

<u>Normalized Emittance (ε / E²) vs. Circumference</u>

低エミッタンス化の取り組み

平衡エミッタンスの式

$$\varepsilon_{nat} = C_q \frac{\gamma^2 \langle H/\rho^3 \rangle}{J_x \langle 1/\rho^2 \rangle} \propto \frac{\gamma^2 \theta^3}{J_x}$$

- γ : Lorentz factor
- θ : Bending angle
- ρ : Bending radius
- H : H-function

 J_x : Damping partition number

- 1 低エミッタンス化に向けて:
 - Multi-bend化 ($\epsilon \propto \theta^3$)。
 - B+QのCombined Magnetの利用($\epsilon \propto 1/J_x$)。
 - Longitudinally varying dipole fieldの利用。

 $(\varepsilon \propto \langle H/\rho^3 \rangle \langle 1/\rho^2 \rangle)$

- 2 狭い安定領域(ダイナミックアパーチャー)の問題解決に向けて:
 - Amplitude Dependent Tune shiftの補正、 Resonance Driving Termの補正、Interleaved Sxの導入
 - 遺伝的アルゴリズムの導入

Multi-bend Scheme for Emittance Reduction

<u>B+QのCombined Magnetの利用</u>

Longitudinally varying dipole fieldの利用例 ε∝ <H/p³>/<1/p²>が小さくなるようにpを調整する 例えばR. Nagaoka, A. F. Wrulich, MAG β_x β_y NIMA 575, 292 (2007). $\rho^{-1}(s) = \frac{\mu}{\rho_0} \frac{e^{-\frac{\mu}{L}s}}{(1 - e^{-\mu})}$ Constant ρ (Achromat) (9) 50 0.8 40 6.67 nmrad 30 0.6 <u>.</u> 0.4 🛡 present SPring-8 (8GeV) 20 Nagaoka's Eq.(9), $\mu = 3$ 10 0.2 fit (3 pieces) O 20 3 5 15 25 30 0 10 s (m) Dが大きい Dが小さい Long. var. ρ (Achromat) アクロマット 側 2 50 3.93 nm.rad Ξ 40 0.8 Dの小さい側で 30 0.6 Bを強くする <u>.</u> D 20 0.2 10 fit (3pieces) 0 15 20 3を適用 0 s (m) s (m) SPring-8 DBAに適用した場合の例 ρ調整の例(1台のBを3分割).

മ

<u>Sub-nm.radエミッタンスリングの計画</u> R.Hettel, Proc. of IPAC2014, MOXBA01.

Facility	E (GeV)	C (m)	Latice	ε (pm.rad)
NSLS-II (USA)	3	792	DBA + D.W.	600 (コミッショニング中)
MAX IX (Sweden)	3	528	7BA	326(建設中)
Sirius (Brazil)	3	518	5BA	280(建設中)
ESRF-Upgrade (France)	6	844	7BA	150(建設決定)
APS-Upgrade (USA)	6	1104	7BA	147
SPring-8-II (Japan)	6	1436	5BA	100
ALS-Upgrade (USA)	1.9	195	9BA	100
BAPS (China)	5	1500		51-100
TauUSR (USA)	9	6280	7BA	3

D.W.: Damping Wiggler

NSLS-II (USA)

- DBAラティス。Damping wigglerで、エミッタンスを 2.1 nm.radから0.55 nm.radまで下げる。
- E = 3 GeV, I = 500 mA_o
- ・ 周長792 m。直線部は5 m x 15 + 8 m x 15。

Max IV (Sweden)

- 7BAラティス。 ε_x = 0.326 nm.rad。
 B (0.5T) + Q (9T/m)のcombined magnetを使用(J_x = 1.85)。
- E = 3 GeV, I = 500 mA。 周長は528 m。 直線部は5 m x 20。
- Amplitude dependent tune shiftを補正するために八極使用。
- 来夏からコミッショニング開始。<u>Multi-bendでsub-nm.radリング</u>に到達する最初のリングになる。世界中が注目。

ESRF-II (France)

- 7BAラティス。 ε_x = 0.150 nm.rad。
 Longitudinally varying dipole fieldを使用。
 B (0.5T) + Q (34T/m)のcombined magnetを使用(J_x = 1.53)。
- $E = 6 \text{ GeV}, I = 200 \text{ mA}_{\circ}$
- 周長は844 m。直線部は5 m x 32。
- ・非線形オプティクス最適化対策:
 低クロマティシティ + 低β、Interleaved Sx、Oct

回折限界を目指す光源リングとSPring-8-II計画

下崎義人(JASRI / SPring-8)

Agenda

- 1 最初に(エミッタンスについて、など)
- 2 「回折限界を目指すリング(DLSR、USR)」の紹介
- 3 現在のSPring-8について
- 4 SPring-8-II計画の紹介
- 5 サマリー

2014年11月21日 先端放射光源に関する研究会

現在のSPring-8蓄積リング SPring-8:第3世代大型放射光施設(8 GeV、100 mA) Top-up入射によるユーザー運転

Standard Undulator λ = 3.2cm, L = 4.5m, K_{max} = 2.5

SPring-8 Storage Ring Design Parameters @ 8 GeV

DBA-6.6 ~ Nov. 2002	DB-3.5 ~ May 2013	DB-2.4 Present
6.67 nm.rad	3.49 nm.rad	2.41 nm.rad
6.67 nm.rad	3.77 nm.rad	2.79 nm.rad
	0.11 %	
(40.15,18.35)	(40.14,19.35)	(41.14,19.35)
(-91, -42)	(-88,-42)	(-117,-47)
(24.4 m,5.8 m)	(22.5 m , 5.6 m)	(31.2 m , 5.0 m)
0.00 m	0.11 m	0.15 m
	DBA-6.6 ~ Nov. 2002 6.67 nm.rad 6.67 nm.rad (40.15 , 18.35) (-91, -42) (24.4 m , 5.8 m) 0.00 m	DBA-6.6 ~ Nov. 2002DB-3.5 ~ May 20136.67 nm.rad3.49 nm.rad6.67 nm.rad3.77 nm.rad6.67 nm.rad0.11 %(40.15, 18.35)(40.14, 19.35)(-91, -42)(-88, -42)(24.4 m, 5.8 m)(22.5 m, 5.6 m)0.00 m0.11 m

SPring-8 Standard Undulator (λ_{II} = 32 mm, L = 4.5 m, K_{max} = 2.5)

SPring-8 偏向電磁石 (B2) (ρ = 39.2718 m, L = 2.804 m)

T. Tanaka and H. Kitamura, SPECTRA code ver. 9.02 (2012).

<u>6GeV高輝度オプティクス設計(スタディ中)</u>

		高輝度オプティクス	ユーザーオプティクス
Beam Energy (GeV)	6	8
Emittance ε	w/o emit. damp.	1.78	2.41
(nm.rad)	w/ emit. damp.	1.33	2.27
Momentum	w/o emit. damp.	0.082	0.109
Deviation δ (%)	w/ emit. damp.	0.087	0.110
光子の実効エミッタンス @ 10keV (m ² rad ²)w/ emit. damp.		25.6 x 10 ⁻²¹	64.7 x 10 ⁻²¹
			25
w/o emit. damp.:	ID gap full open.		2.5

w/ emit. damp.: 21台のstand. IDをmin. gap.

回折限界を目指す光源リングとSPring-8-II計画

下崎義人(JASRI / SPring-8)

Agenda

- 1 最初に(エミッタンスについて、など)
- 2 「回折限界を目指すリング(DLSR、USR)」の紹介
- 3 現在のSPring-8について
- 4 SPring-8-II計画の紹介
- 5 サマリー

 CDR PART-I が公開されている http://rsc.riken.jp/pdf/SPring-8-II.pdf
 CDR PART-IIも近日公開予定

2014年11月21日 先端放射光源に関する研究会

<u>SPring-8-IIの境界条件</u>

大前提: 大型放射光施設で、将来、光が失われてはならない

1 トンネル再利用 光軸を極力動かさない → 周長の変化

> SPring-8 : 1435.949 m SPring-8-II : 1435.454 m

- 2 ダークタイム1年 電源ケーブルの再利用も検討 (撤去→敷設では時間がかかるので)
- 3 省電力

永久磁石利用の検討、 低エネルギー化(8GeV→6 GeV)など

Multi-bend Scheme for Emittance Reduction

Equation of natural emittance:

$$\varepsilon_{nat} = C_q \frac{\gamma^2 \langle H/\rho^3 \rangle}{J_x \langle 1/\rho^2 \rangle} \propto \frac{\gamma^2 \theta^3}{J_x}$$

- γ : Lorentz factor
- $\boldsymbol{\theta}: \mathbf{Bending} \ \mathbf{angle}$
- ho : Bending radius
- H: H-function
- J_x : Damping partition number

Lattice design of multi-bend lattice

It seems that multi-bend scheme is very attractive to achieve diffractionlimited emittance (10pm.rad for 10 keV photon). However,

Shimosaki, Soutome, Tanaka, @ Workshop on Diffraction Limited Storage Rings (2012).

Risk of Multi-bend Scheme

Ver.

Hor.

12

12

10

8

No. of B / Cell

B"L / **B**ρ

No. of B / Cell

8

2

Δ

Shimosaki, Soutome, Tanaka, @ Workshop on Diffraction Limited Storage Rings (2012).

Catastrophe of Ring-based Light Source

Catastrophe of ring-based light source from viewpoint of operation:

ause $k(x - x_{offset})^n \rightarrow nkx_{offset}x^{n-1}$

due to strong magnetic error (= feed-down field),
➢ difficulty in designing vacuum system due to narrow bore,
➢ difficulty in extracting ID radiation due to narrow bore.

 Very tight packing factor (= very short space) may cause
 ➢ difficulty in installing auxiliary magnets, monitors, etc (steering, Skew Q, BPMs, Vacuum components).

We must avoid the catastrophe in pursuing diffraction-limited emittance.

Shimosaki, Soutome, Tanaka, @ Workshop on Diffraction Limited Storage Rings (2012).

Integration of Emittance Reduction Schemes

What we do: To avoid catastrophe and achieve diffractionlimited emittance, we should <u>integrate</u> emittance reduction schemes to relax multi-bend lattice design.

Equation of natural emittance: \mathcal{E}_{r}

$$_{nat} = C_q \frac{\gamma^2 \left\langle H/\rho^3 \right\rangle}{J_x \left\langle 1/\rho^2 \right\rangle}$$

Emittance reduction schemes:

- 1. Optimization of dipole field (*p*) in longitudinal
- 2. Reduction of stored energy (2) with the help of advanced undulator design
- 3. Sophisticated optimization to approach to the theoretical minimum
- 4. Other reduction schemes

<u>ラティス関数(リング)</u>

SPring-8 v.s. SPring-8 II

	SPring-8	SPring-8 II (CDR)
Electron energy	8 GeV	6 GeV
Stored current	100 mA	100 mA
Lattice	Double Bend (2B)	5 Bend Achromat (5BA)
Natural emittance	2400 pm.rad	150 pm.rad (w/o ID) ~ 100 pm.rad (w/ IDs)
Energy deviation	0.109 %	0.095 %
(J_x, J_y, J_s)	(1, 1, 2)	(1, 1, 2)
Tune	(41.14, 19.35)	(109.135, 42.34)
Natural chrom.	(-117, -47)	(-151, -158)
Coupling ratio	0.2 %	10 %
Circumference	1435.9 m	1435.4 m

SPring-8-IIについて、機器配置等を考慮して、今後パラメータが変わる可能性がある。
 また、以下ではCDRよりも最新(2014/11/21)のラティスで計算しているものも一部含まれている

<u>ID発光点での横方向電子ビームプロファイルの比較</u>

<u>空間広がり</u>

<u>ID発光点での横方向電子ビームプロファイルの比較</u>

角度広がり

Dynamic Aperture / Momentum Aperture (Preliminary)

Code: CETRAを使用

<u>チューンとラティス関数の乱れ</u>

直線部34箇所にID(λ_u = 18mm, L_u = 3.6 m, K_u = 2.3)を設置した場合

	Q _x	Q _y	Δβ _x / β _x (RMS)	Δβ _y / β _y (RMS)
ID無し (ideal)	109.135	42.340	0.00 %	0.00 %
ID有り 補正無し	109.135	42.417	0.01 %	8.38 %
ID有り チューンのみ <u>グローバル補正</u> (= リング全周のQを使用)	109.135	42.340	0.005 %	0.92 %
ID有り チューンのみ <u>ローカル補正</u> (= ID直近のQを使用)	109.135	42.340	0.09 %	1.16 %
ID有り beta-beatのみローカル補正	109.066	42.489	0.44 %	1.01 %
ID有り beta-beatをローカル補正 チューンをグローバル補正	109.135	42.340	0.68 %	0.49 %

IBS、タウシェックビーム寿命

<u>SPring-8-II ハードウェアに関して</u>

真空

• 磁石のボア直径が32 mm → 対応するアルミニウムの真空パイプ

- NEG coatingは使用しない

SPring-8-II ハードウェアに関して

磁石

- 偏向磁石は永久磁石を検討中
- 磁石間が狭い → コイルエンド部の設計を検討中
- 入射部に関しては再構築予定(π-バンプ等)
- 機器のアライメント精度に関して 架台間が75 µm(RMS)以内 架台内が25 µm(RMS、2σカット)以内 を検討中

<u>SPring-8-II ハードウェアに関して</u>

不安定性

- 縦方向 → 縦方向BBFで十分抑えられる範囲
- 横方向(特にy方向)
 チェンバーの狭口径、IDのmin.gap:不安定性を増大する方向
 SPring-8-IIの低β関数 : 抑制する方向
 - → 現状の横方向BBFでギリギリ抑えられる範囲という検討結果
 (IDのmin.gap変更等の可能性
 → 横方向BBFの増強を検討)

・CDR PART-I が公開されている http://rsc.riken.jp/pdf/SPring-8-II.pdf ・CDR PART-IIも近日公開予定

SPECTRA

SPring-8 v.s. SPring-8 II コヒーレント比とコヒーレントフラックス

<u>コヒーレント長の比較</u>

コヒーレント長
$$L = \frac{R\lambda}{2\pi\sigma}$$

R:発光点から 二重スリットまでの距離 λ:光の波長 σ:光源サイズ

コヒーレント長の比較 R = 80 m, 10 keV photonのとき

	σ_{x} um / σ_{y} um	L _x um / L _y um
SPring-8 8GeV	319 / 5	5 / 322
SPring-8 6GeV	213 / 4	7 / 399
SPring-8-II	22 / 6	70 / 275

コヒーレント領域の比較.これより試料が 小さければ、コヒーレント光を使った 干渉実験が可能になる.

SPring-8(仮想光源有り)の1000倍のフラックスになる可能性

サマリー

1. 回折限界(輝度、コヒーレンスの向上)を目指したリング

→ 世界各国で設計中・建設中

- Multi-bendによる低エミッタンス化
- B + QのCombined Magnetによる低エミッタンス化
- Longitudinally Varying Dipole Fieldによる低エミッタンス化
- 2. SPring-8 IIは5BAで100pm.rad、6GeVで100mAを目指す。
 - Multi-bendとLongitudinally Varying Dipole Fieldによる エミッタンス低減。
 - Interleaved Sxと八極による安定領域の拡張
- 電子エネルギー低下(8→6GeV)による放射光への影響を、
 標準アンジュレータの高度化で対応。SPring-8-IIはSPring-8に比べて
 - 20倍高いコヒーレント比、10倍高いコヒーレントフラックス
 - 1000倍明るい100nm集光ビーム

を供給する予定。

AOFSRR2014 Hsinchu Spectrum of BM Radiation SPring-8 vs. SPring-8-II Upgraded <u>(100 pmr</u>ad) Ecp=13.9 keV@BM1 RM2 Ecp=22.8 keV@BM2 BM1 BM2 BM1 Present (2.4 nmrad) Ecp = 28.9 keV@BM1

10¹⁸

 10^{17}

10¹⁶

Brilliance