トピックス

ソルテック1GeV放射光源施設

中村 史朗 岡田 浩一

株式会社ソルテック

SORTEC 1GeV Synchrotron Radiation Source Facility

Shirou Nakamura and Koichi Okada

SORTEC Corporation

Synchrotron radiation is expected to offer remarkable possibilities for many fields of science and technology. In recent years, there are worldwide interests in the field of industrial applications including x-ray lithography.

The major purpose of SORTEC Corporation is to study the application technologies of synchrotron radiation. Therefore, the 1 GeV synchrotron radiation facility at SORT EC is optimized for the production of soft x-rays around 1 nm which meet the lithography requirements.

The construction of the synchrotron radiation source has been completed in the end of March 1989 at Tsukuba Research Laboratory of SORTEC.

The first beam was stored in the storage ring at the design energy on September 28 1989. The stored beam current of 200mA, which is our design goal, has been successfully achieved with the beam lifetime of over 4 hours only one month after the first beam storage. At present, the beam lifetime reached over 8 hours.

This paper gives a summary of the characteristics of the facility and describes the remarkable progress during the initial beam operation.

Moreover, the design features of beam lines for the lithography use installed in the storage ring are also described including the current status.

1. はじめに

(㈱ソルテックはシンクロトロン放射光の利用技術を確立することを目的に基盤技術促進センター・

(出資7割)と関連企業13社(出資3割)の出資 を得て,昭和61年6月に設立された会社組織の研 究所である。研究内容は,

- ①高輝度で安定なシンクロトロン放射光源 (SOR光源)装置技術
- ②シンクロトロン放射光を効率よく安定に利 用施設にに導き出すためのビームライン技 術
- ③超微細加工のための超精密・高精度アライ ナ技術

に関するものである。

ソルテックの1GeV放射光源施設は、これら の研究を効率よく実施していくために建設された ものである。この施設の中核をなす電子エネル ギー1GeVの放射光源装置は、利用技術の研究 に最適な光源を早期にかつ確実に実現することを 第一の目的として設計・製作されている。同時 に、産業用放射光源装置としての基本技術や高度 化技術を研究することも目的の一つである。 この放射光源装置の製作は昭和62年12月に開始 し、昨年(平成元年)3月末当社の筑波研究所に 据え付けを完了した。昨年7月末から実際にビー ムを使った調整試験を開始し、2カ月後の9月28 日には初のビーム蓄積と放射光の発生に成功して いる。更に、その1ケ月後には蓄積電流200mA, ビーム寿命4時間以上という本装置の目標性能値 を達成した。現時点では、ビーム寿命は更に伸び 200mAで8時間に到達している。

本装置から得られた放射光は,波長10Åにおいて40mW/Å/mrad²という高いパワー密度を持つ安定した光であり,半導体リソグラフィに代表される産業利用技術を研究するうえで極めて有効な光源であると考えられる。

ビームラインについては、平成元年度上期後半 から製作を開始し、本年3月末に放射光源施設へ の設置を完了した。当面4本のビームラインを設 置し、2本はリソグラフィ応用研究、1本は基礎 的リソグラフィ研究、1本は超高真空材料評価へ の使用を目的としている。現在、アブゾーバ、ミ ラーなどの素子の放射光による枯らしを行ってい る。

Fig. 1 The layout of SORTEC 1GeV synchrotron radiation source facility

利用技術の研究のための本格的なビーム運転 は、この5月から開始を予定している。

以下では放射光源装置ならびにリソグラフィ専 用ビームラインについて,それらの設計方針,装 置構成の概要,及びこれ迄に得られたビーム特性 や設置状況を中心に現状を紹介する。

(b)

(c)

Fig. 2 Overview of the synchrotron radiation source: (a)Electron linac, (b)Electron synchrotron, (c)Electron storage ring(SOR ring)

2. 施設の概要

図1に、本施設を設置している実験棟(地上1 階,地下1階構造,床面積:40m×53m)の地下 1階部のレイアウトを示す。

光源装置は図に示したように、40MeVの電子 ライナック(前段入射器)、40MeVのビームを1 GeVに加速する電子シンクロトロン(入射器) 及び、1GeVの電子蓄積リング(SORリング)か ら構成されている。

電子蓄積リングの周囲には、厚さ1mのコンク リート壁を介して複数の放射光利用実験室が配置 されている。完成した4本のビームラインを経由 して放射光が利用実験室に導かれている。なお、 蓄積リングには図に示すように最大10本のビーム ラインが取付けられるよう放射光取出しポートが 設けられている。この内8本は周囲の実験室に放 射光を取出すことが可能である。

運転は、実験棟地上1階部に設けられた制御室 から行われる。地上1階には、この他に空調機械 室が設けられている。

図2はそれぞれの加速器の外観を示したもので ある。ライナックの全長は約9.5m,電子シンク ロトロンと電子蓄積リングの直径はそれぞれ約14 m,約15mである。図3に、制御室に配置されて いる運転・制御装置の外観を示す。

Fig. 3 Overview of the control system

3.1 GeV放射光源装置

3-1 装置の設計方針

本装置は放射光の産業利用を目指した研究用光 源であることから,安定で強度の高い放射光をで きるだけ確実に,かつ早期に得ることが必要であ る。従って,その方式設計においては,専用の入 射器を備えて加速と蓄積とを機能別に分離したフ ルエネルギー入射方式を用いるとともに常電導電 磁石方式を採用し,技術的に確実な光源を目指し た。

電子蓄積リングのパラメータ設計においては, 半導体リソグラフィ応用の観点から必要と考えら れる以下の諸条件を満足することを基本とした。

①ピーク波長 5Å≤λp≤10Å
 ②放射光強度(10Å中心)

 $\geq 40 \text{mW}/\text{Å}/\text{mrad}^{2}$ (7~13Å) $\geq 240 \text{mW}/\text{mrad}^{2}$ ③ビーム寿命 $\geq 4 \text{hr}$ ④電子ビームサイズ (2 σ) $\leq 7 \text{ mm}$

①と②については、蓄積リングの電子エネル ギーと偏向磁場及びビーム電流の三つの主要なパ ラメータを決めれば一意に定まる量である。しか し、逆に波長や強度の条件からそれらを満たす蓄 積リングパラメータを決定する過程には十分な考 察が必要である。

図4は、蓄積リングの基本パラメータを検討す るために作成した図である。横軸に偏向磁場 (B),縦軸に電子エネルギー(E)をとり、得られる 放射光のピーク波長(λp),一定の放射光強度を 得るために必要なビーム電流値、及び偏向半径 (R)とを等高線で表示している。

①の条件からパラメータ選択の範囲が図中央部 の太い2本の実線にはさまれる領域に限定される ことが判る。更に早期に実現できるように,200 mA以下のビーム電流値で②の条件を満足する範 囲に絞る。これにより,パラメータの選択範囲は 図のハッチ部に限定される。更に,常電導電磁石

Fig. 4 General diagram giving relations between major parameters of synchrotron radiation source and obtained spectrum

として実績の多い磁場の強さを選ぶと同時に偏向 半径が過大とならないことを念頭において最終的 な基本パラメータを1GeV, 1.2T,200mAと決定 した。

図5は、蓄積リングから得られる放射光の波長 スペクトルとその垂直方向の空間分布を示したも のである。なお、条件②として設定したパワー密 度の値は本図で示した垂直方向±0.5mradの範 囲の平均値である。従って、ビーム軌道平面上で は、その平均値の1.5倍以上のパワー密度(10Å において、64mW/Å/mrad²)となっている。

条件③は、主としてリングの真空設計や高周波 系の設計に依存する量であり、値としては実現可 能な値である。しかし、従来の同種の装置の実績 からみて早い時期にこのビーム寿命を実現するこ とは簡単ではないと考えられる。従って、設計段 階では長期的な目標値とみなした。

条件④は、光源点からウエハー面迄の距離を7

Fig. 5 Spectrum and it'spatial distribution

m, プロキシミティギャップを20µmと仮定し, 半影ぼけを20nm以下とする条件から設定した値 である。この値は比較的大きなビームエミッタン スを許容するものであり,低エミッタンスが一般 的に要求される大型放射光装置に比べ,リソグラ フィ用途の光源の特徴の一つといえる。この数値 は,通常の蓄積リングの設計で十分実現可能であ る。但し,本条件については今後電子ビームの軌 道条件や照射面積拡大方式を含めた厳密な解析が 必要と考える。

以上述べた設計方針にもとずいて定めた主要パ ラメータを表1に示す。同表には,設計値と共に 初期の調整で得られた達成値(但し,平成元年10 月末時点)も併記している。ここに示されている とおり,電子エネルギー,ビーム電流及びビーム 寿命の全てが初の蓄積後1ケ月の時点で設計目標 値に到達している。この時期はまた,入射器系を 含めたビーム調整を開始してから僅か3ケ月の時 点に相当し本光源装置の搬入を開始してから約1 年後,製作開始時点からいえば2年足らずの時期 に当たる。更に,この1カ月後にはビーム寿命は 200mAで8時間に到達している。

as of Oct. 31 1989			
	Designed	Achieved	
Storage Ring			
Energy	$1 { m GeV}$	1GeV	
Dipole Field	1.2T	1.2T	
Bending Radius	2.78m	-	
Critical Wavelength	15.5Å	-	
Peak Wavelength	6.5Å	-	
Beam Current	200mA	200mA	
Beam Lifetime	4hr	4hr	
Circumference	45. 7m	-	
Synchrotron (Injector)			
Injection Energy	40MeV	$40 \mathrm{MeV}$	
Maximum Energy	1 GeV	1 GeV	
Dipole Field (maximum)	1.1T	1.1T	
Beam Current	30mA	30mA	
Circumference	43. 2m	-	
Linac (Pre-Injector)			
Energy	$40 \mathrm{MeV}$	40MeV	
Beam Current*	`>30mA	60~80mA	
$\triangle E/E$	$<\pm 1.5\%$	±0.67%	
Emittance	<3.8 <i>π</i> mm• mrad	0.7πmm• mrad	

Table 1 Major parameters of 1GeV synchrotron radiation source with the achieved values as of Oct. 31 1989

*Useful beam current which satisfies values of $\triangle E/E$ and beam emittance

このように従来に例のない短期間のビーム立ち 上げを実現できたことは、上に述べた装置設計の 基本方針とパラメータ選択の妥当性を示したもの といえよう。

以下,主要装置の概要を述べる。なお,これら の装置の製作に関しては電子ライナック,電子蓄 積リングについては三菱電機(㈱が,電子シンクロ トロンについては(㈱東芝がそれぞれ担当した。ま た制御システムについては三菱電機(㈱)(一部(㈱東 芝)が担当した。

3-2 電子ライナック^{2),3)}

前段入射器としてのライナックに対しては,一 般に電子シンクロトロンで捕獲することのできる 良質のビームをできるだけ多く供給することが要 求される。即ち,大電流ビームの加速と同時にエ ミッタンスやエネルギー分散が小さいビームの発 ms,繰り返しの頻度は最大1.25Hz(周期800ms) 生が課題である。更に、全システムの中でそのエ で設計されている。電子ビームの入射と加速及び ネルギーをどのように選定するかもポイントの一 出射の一連の動作は、制御システムから送られて っである。 くるトリガパルス(1サイクル信号)を基準にし

本装置では、電子シンクロトロンの最大エネル ギーが比較的高いこと、全体の装置構成の空間配 置との整合性を考慮して、従来から前段入射器と してよく用いられている15MeV~20MeV前後の 加速管を2本組み合わせて1台のクライストロン でドライブするライナックとした。加速管の長さ は1本約2.3mである。また、ピーク出力35MW のクライストロン(PV-3035)の出力をプリバン チャ2個、バンチャ、及び2本の加速管に分配し ている。

3-3 電子シンクロトロン4)

入射用電子シンクロトロンの設計パラメータを 表2に、その構成を図6に示す。

電子ライナックからビーム輸送系を経由して導 かれる電子ビームは、4台のバンプ電磁石と入射 用セプタム電磁石により最大10回転のマルチター ン入射が行われる。最大エネルギーへの加速は400 ms,繰り返しの頻度は最大1.25Hz(周期800ms) で設計されている。電子ビームの入射と加速及び 出射の一連の動作は,制御システムから送られて くるトリガパルス(1サイクル信号)を基準にし て,加速時の電圧・電流パターンメモリー及びタ イミング設定器を用いて行われる。この1サイク ル信号の周期は可変であるので,繰り返しの頻度 は1.25Hz以下の範囲で任意に設定可能である。

出射系は、ファーストキッカー電磁石と出射用

Table 2	Design parameters of the electron
	synchrotron

-,	
Injection Energy	40MeV
Maximum Energy	$1 { m GeV}$
Circumference	43.19m
Bending Radius	3. 03m
Lattice Structure	FODO
Beam Current	30mA
Repetition Rate	1.25 Hz
Betatron Tune $(\nu \chi / \nu y)$	2.25/1.25
Maximum Dipole Field	1.1T
Maximum Gradient of Quadrupole field	4.8T/m
RF Frequency	118MHz
Maximum RF Voltage	60kV
Vacuum Pressure (with beam)	<1×10 ⁻⁶ Torr

Fig. 6 The electron synchrotron

セプタム電磁石により行われる。偏向電磁石,4 極電磁石の鉄心はいずれも板厚0.5mmの珪素鋼 板の積層構造とし,対応する部分の真空ダクトは ベローズタイプとしている。また加速用の高周波 空胴は,周波数118MHz,銅製でリエントラント 型のものを用いている。真空ダクトには偏向電磁 石の下流部の1カ所にSRモニタ用のポートを備 え,放射光による電子ビームの計測も行えるよう にした。

3-4 電子蓄積リング(SORリング)⁵⁾

電子蓄積リングの設計パラメータを表3に,その構成を図7に示す。リングの直線部長は3.57m とし、挿入光源を主体とする低エミッタンスリン グに比べ、比較的円形に近い軌道を構成してい る。更に、ラティスにはFODO形を採用し、図 8に示すようにベータ関数が滑らかに変化するよ うにしている。

電子シンクロトロンから出射された電子ビーム は、ビーム輸送系を経由して蓄積リングのセプタ ム電磁石部に入射される。入射時には、3台のバ ンプ電磁石が用いられる。蓄積リングの真空度 は、ビーム寿命の観点から定格ビーム電流値にお いて10⁻⁹Torr程度の値が必要である。真空排気 系は、総排気速度としておよそ26,000L/sの真空 ポンプを備えている。偏向電磁石部の真空ダクト

Table 3	Design parameters of the electron
	storage ring

Beam Energy	1GeV
Circumference	45.73m
Bending Radius	2.78m
Dipole Field	1.2T
Lattice Structure	FODO
Beam Current	200mA
Betatron Tune $(\nu\chi/\nu y)$	2.235/2.215
RF Frequency	118 MHz
RF Voltage	$90 \mathbf{kV}$
Momentum Compaction Factor	0.17
Radiation Loss	32keV/turn
Natural Emittance	0.5mm•mrad
Beam Size $(\sigma \chi / \sigma y)$	2.0/0.7mm
Touschek Lifetime	40hrs

Fig. 7 The electron storage ring

には,1台当り2本の放射光取出しポート(取出 し角度:6°と28°)を備えている。また,それ らのほぼ中間の位置にSRモニタ用のポートを備 えている。

フルエネルギー入射方式のため,偏向電磁石や 4 極電磁石は直流運転される。従って,後述する ビーム補給のための追加入射も比較的簡単な操作 で行えるという利点がある。高周波空胴の周波数 は電子シンクロトロンと同じ118MHz,リエント ラント型で,銅とステンレスのクラッド構造とし ている。

3-5 制御システム⁶⁾

制御システムは、1台のマスタコンピュータに より全ての機器を統括するとともに、負荷の低減 のためにスレーブであるインテリジェントな中継 盤を設け下位の機器を制御するシステムとした。 これにより、制御の集中化と自動化が容易に行え る。図9に制御システムの構成を示す。また、制 御ソフトウェアは、ルーチンオペレーションモー ド、ビーム調整モード、データ解析モード及びア ラーム処理モードから構成されている。ルーチン オペレーションモードは、光源の定常運転時の操 作性の向上を念頭におき、1~数ステップのタッ チパネル上の操作で電子ビームの入射から蓄積ま でを自動的に連続して行えるようにしている。

4. 放射光源装置の現状

ビーム調整を平成元年7月26日に開始してから およそ半年近く初期調整を実施してきた。今後, 細部の調整によりビーム特性は更に向上するもの と期待されるが,これまでの調整の経過と現時点 で得られている主要なビーム特性を以下にまとめ た。

Fig. 8 Lattice and dispersion functions for the 1GeV electron storage ring

Fig. 9 Block diagram of the control system

-25-

4-1 ビーム初期調整の経過^{7),8)}

まず, ライナックから出射された電子ビーム を, 電子シンクロトロンに至るビーム輸送系の設 計軌道に通すための調整を行った。このとき, ビーム位置・形状, ビーム電流, エミッタンス及 びエネルギースペクトルの測定も同時に実施して いる。このために, ビーム輸送系には各種のモニ タが配置されている。

8月の初めに電子シンクロトロンの入射セプタ ム電磁石部にビームを導入し,以後電子シンクロ トロンのビーム調整に入った。入射サイクルは, ビーム初期調整の間は3.2秒に1回としている。 最初に1ターンの調整を実施したのち多回転調整 に入った。マルチターン入射過程の調整,入射時 のチューンの調整及び加速過程での偏向磁場と収 束磁場のトラッキング調整の後,9月16日に1 GeVへの加速に成功した。同時に,電子シンク ロトロンからの放射光も観測している。 加速に成功後早い時期にビーム電流も向上し, 既に9月末には目標とした30mAのビーム電流を 定常的に加速できるようになっている。

電子シンクロトロンの出射系の調整と蓄積リン グまでのビーム輸送系の調整を実施した後,9月 27日に蓄積リングの入射セプタム電磁石部への ビーム入射を開始した。翌28日に,初の電子ビー ム蓄積と放射光の発生に成功した。蓄積リングへ の初の入射後,電子ビーム蓄積までに要した時間 は実質9時間であった。この蓄積時のビーム電流 値は,3.5mAであり,故意にビームを遮断する までの約2時間,放射光は連続して観測された。

初のビーム蓄積後2週間は、およそ60mAの ビームによるビームエージングを実施した。これ によりビーム寿命は50mAで3時間、80mAでは 2時間という値となった。対応するリングのオン ビーム時の真空度は、この時点で1.4×10⁻⁹Torr であった。

Fig.10 Stored beam current, beam lifetime and vacuum pressure obtained at the end of November 1989

Fig.11 The improvement of the beam lifetime(Decay rate plot)

平成元年10月23日には、本装置における目標電 流値である200mAのビーム蓄積に成功した。更 に、10月末には200mAにおいてビーム寿命4時 間を達成している。

更に,その1カ月後(11月末)に得られたデー タを図10に示す。200mAのビーム電流における 寿命が,1カ月のビームエージングにより4時間 から8時間に向上していることが判る。また,100 ~140mAでは10時間以上の寿命が得られてい る。

図11は、ビームエージングによる寿命の伸びを

一例として示したもので,ビーム電流の減衰率表 示法⁹⁾によるものである。

4-2 ビーム特性の現状

本装置のビーム特性は、先に表1で示したとお りライナック、シンクロトロン及び電子蓄積リン グのいずれもが当初設計段階で目標とした値を越 えている。この他にも、ビームの入射や出射の効 率も当初の想定値を越えている。現時点迄に得ら れた1ショット当りの入射ビームの最大値は約15 mAであり、200mAの電子ビーム蓄積に要した 最短時間は、繰り返しの周期が3.2秒の入射運転 においても、僅かに1分である。

図12は、一つの試みとして実施したビーム補給 のための追加入射運転の結果である。これは半導 体リソグラフィ用光源として考えた場合、フルエ ネルギー入射方式を採用することに伴うメリット の一つと考えられる。通常の運転ではビーム電流 値が長い時間スケールで徐々に減少し、光強度も それに応じて減少する。従って、露光量の調節を 行う必要が生ずるが、ビーム補給を行う運転では 光強度をほぼ一定に保つことができる。図から判 るように、追加入射瞬時にも蓄積ビームの不安定 な挙動は全くみられず、長時間安定に一定レベル

Fig.12 Results of the beam refill operation

以上の電子ビームを蓄積できている。なお,本図 では追加入射の開始タイミングに僅かの差が見ら れるがこれは手動で実験的に行ったことによるも のである。従って,必要に応じて一定のビーム電 流値や一定のタイミングじ自動的に追加入射を行 うことは容易である。

図13に、電子ビームサイズをSRモニタで測定 した結果を示す。図は電子ビームの垂直方向の測 定結果であり、2 σ で約1.2mmであった。水平 方向は2 σ で約3.6mmと得られている。これら の値は、軌道計算から推定される値とほぼ一致し ている。

5. ビームライン

5-1 設計方針

ソルテックのビームラインは、放射光を用いた リソグラフィが90年代の後半において実用化され ることを念頭において、実用的工業利用の観点か ら設計を行った。0.25 µ m転写パターン技術とし て、放射光リソグラフィは最も有力視されてい る^{10),11)}。以下に主な設計方針をまとめる。

①集中制御方式ビームラインシステム

ソルテックのビームライン制御には,各 ビームラインにおけるローカルな制御に加 えて,全てのビームラインについての集中

Fig.13 The beam profile obtained from the SR monitor

制御の概念を導入した。

②振動ミラーによる露光面積の拡大 縦方向露光域の拡大方式として、振動ミ ラーによる方法を採用した¹²、特に新た な方式として、ミラーを固定したミラー チャンバを振動させることとした¹³。

③コンパクトなビームライン

振動ミラーの中心が発光点から2.7m,露 光位置が約8mと,振動ミラーを用いた ビームラインとしてはかなり短いコンパク トなビームラインとなっている。

④真空保護機構

振動ミラーの下流部に,高速遮断バルブと 衝撃波遅延管とから成る真空防御機構を設 けた。

⑤超高真空ビームライン

下流部を除くビームラインのほぼ全域で 10⁻¹⁰Torr台(無負荷時)の超高真空ビー ムラインである。

5-2 構成概要

集中ビームライン制御システムは、ビームライ ン・メインコンピュータ (beamline main computer)とシーケンサー(programmable sequence controller…PSCと略す) リンクとか ら成る (図14)。ビームライン主コンピュータか らPSCへのアクセスは、各ビームラインのス ティタスを知るために、PSCリンクを通して行わ

-27-

れる。また、ビームライン・メインコンピュータ は、各ビームラインの使用記録を保存し、電子蓄 積リングのメインコンピュータシステムから、電 子蓄積リングのデータを受け取る。

ローカルなビームライン制御システム(例とし て,BL-B-1)は、PSCと制御パネルとパーソナ ルコンピュータとから成る。真空バルブ、アブ ソーバ、ビームシャッタ、真空ポンプ及び真空 ゲージなどのビームライン構成素子は、PSCに よって制御される。PSCは、コストが安価であ ること、PSCライン仕様変更などに対する融通 性、設操作及びビームライン構成素子の誤動作に 備えたインターロックプログラムにおけるメンテ の容易さなどの観点より採用した。パーソナルコ ンピュータは、ビームライン立上げ時のベーキン グ自動化制御、放射光調整用のパルスモータ制 御、ビームライン故障情報などの表示、ビームラ イン各部の真空度グラフ表示などを行うことがで きる。

図15と図16に,ビームラインBL-B-1の構成 と全容図を示す。放射光の縦方向露光領域拡大の ために、新たな振動ミラー機構を用いた。ミラー がミラーチャンバに固定され、偏心カムを取り付 けたステッピングモータによってチャンバ自体が 振動する。軸受けなどの可動部分を全て大気中に 設置することで、ミラー駆動機構の信頼性を高め た。真空保護機構として、高速遮断バルブと衝撃 波遅延管の組み合せを用いた。高速遮断バルブと それに連動するゲートバルブ(V2)をミラーチャ ンバの下流に設置することにより、Be窓破壊のよ うな最悪のケースにおいても、ミラーチャンバ及 び蓄積リングを超高真空に復帰するための被害を 最小限にくい止め再立ち上げの時間を短くするこ とが可能である。

5-3 設置状況

平成元年度上期後半から製作を開始し、本年3 月末に放射光源施設への設置を完了した。本年1 月下旬に4本のビームラインの搬入・組立てを順 次開始した。2月中旬に電子蓄積リングとは真空 的に隔離された状態で、サファイア窓を透過した 可視光による光軸調整を実施した。2月下旬に大

Fig.15 BL-B-1 beamline structure:

V, G, NP and TMP stand for pneumaticgate valve, Bayard-Alpert ion gauge, tripole-type ion pump and turbo molecular pump, respectively

Fig.16 BL-B-1 beamline diagram:

V and TMP stand for pneumatic gate valve and turbo molecular pump, respectively

気導入試験を実施し,高速遮断バルブの性能を評価・確認をした。3月中旬に電子蓄積リングと真空的に結合し,初めてビームライン中に放射光を導入し,蛍光板モニタの発光を観測した。現在,放射光によるアブソーバの枯らしを終了し,引き続きミラーの枯らしを行っている。図17に,アブソーバ枯らしの結果を示した。

6. おわりに

利用技術の研究のための本格的なビーム運転 は、この5月から開始を予定している。

光源装置のマシン・スタディもユーザ運転と並 行して実施していく予定である。そのターゲット は500mA以上のビーム電流蓄積であると考えて いる。

文献

- 1)中村・大野・島野・吹田・結石・長戸路・北野・冨
 増:"1 GeV SOR光源装置",昭62秋季第48回応物
 学術講演予稿集,20p-G-1, p.477
- S.Nakamura, R.Kitano, M.Shiota, T.Tomimasu: "40MeV Linac for the 1GeV Synchrotron Radiation Light Source(11)" Proc. of the 14th Linear Accelerator Meeting in Japan, Sept., 1989
- 3) M.Shiota, A.Hiraki, M.Mizota, T.Iida, M.Haraguchi,
 K.Kuno, S.Nakamura, M.Ohno, T.Tomimasu:
 "Design and performance of the 40MeV Linac and Beam Transport System for the 1 GeV Synchrotron Radiation Source at SORTEC", Proc. of the 7 th Symposium on Accelerator Science and Technology, Dec., 1989
- M.Kodaira,K.Kondo,Y.Yoshiwara,E.Toyoda, S.Kawazu, S.Nakamura, M.Ohno, N.Awaji, S.Nishizawa, T.Tomimasu: "Design and performance of the Electron Synchrotron for the 1

Fig.17 Synchrotron radiation irradiation

to the absorber

GeV Synchrotron Radiation Source at SORTEC", ibid.

- 5) M.Takanaka,Y.Yamamoto,Y.Kijima,T.Ohba, H.Tsuchidate, S.Nakamura,M.Ohno,N.Awaji, T.Tomimasu: "Construction and First Operation of the 1 GeV Electron Storage Ring for the Synchrotron Radiation Source at SORTEC", ibid.
- 6)淡路・大野・中村・高仲・小峰・飯田・豊田: "ソ ルテック1GeV-SR 光源の計算機制御",第14回 HISOR研究会資料,1990
- 7) S.Nakamura, M.Ohno, N.Awaji, A.Chiba, R. Kitano, T.Satow, O.Asai, M.Takanaka, T.Iida, Y.Yamamoto, S.Kawazu, M.Kodaira, K.Kondo, T.Tomimasu: "Status of the 1GeV Synchrotron Radiation Source at SORTEC", Proc. of the 7th Symposium on Accelerator Science and Technology, Dec., 1989

8) 中村:"X線リソグラフィ用ソルテック1GeV放射

-30-

光源", 電気学会電子デバイス研究会資料, DD-90-39, 1990

- 9) T.Tomimasu,T.Noguchi,S.Sugiyama,T.Yamazaki,
 T.Mikado,M.Chiwaki,T.Nakamura,R.Suzuki:
 "Estimation of Touschek Effect and Ion Clearing by the Decay Rate Plot Method", Rev. Sci. Instrum. 60 (7), July 1989
- R.P.Healbich, J.P.Silverman, and J.M.Warlaumont: "Synchrotron Radiation X-Ray Lithography", Nucl.Instrum.Methods Phys.Res.222, 291 (1984).
- A.Heuberger: "X-Ray Lithography", Microelectron. Eng. 5, 3 (1986).
- 12) K.Fujii, K.Okada, M.Nagano, and H.Kuroda:
 "Precisely Controlled Oscillating Mirror System for Highly Uniform Exposure in Synchrotron Radiation Lithography", J.Vac. Sci. Technol. B6, 2128(1988).
- 13) 西野・河上・柳沢・岡田: "放射光リソグラフィ用
 ビームラインシステムの開発", 平成2年春季第37
 回応用物理学会講演予稿集, 28p-PD-21, p.488

むーのいち

フルエネルギー入射方式 (Full Energy Injection)

で、ビームを加速し、蓄積リングへ入射する方式。蓄積 リングのビームエネルギーよりも低いエネルギーで入射 し、蓄積リングで更に加速しエネルギーを上げる方式 は、低エネルギー入射方式(Low Energy Injection)と 呼ばれる。

フルエネルギー入射方式は加速と蓄積の機能を分離し た方式であり、ビーム蓄積が比較的容易であることや運 転・制御法を単純化できるという長所がある反面、入射 器系が大型化するという短所がある。一方、加速と蓄積 とを兼用する低エネルギー入射方式は、入射器系をコン

入射器であらかじめ蓄積リングのビームエネルギーま パクトに構成できるという長所があるが、ビーム寿命の 短かい低エネルギー域で蓄積リングとして必要なビーム 電流を全て蓄積し、そのままビームを失なわずにエネル ギーを上げていく必要がある。この為、リングの設計や 制御に高度な技術を要する。

> 最近、産業用途の光源として開発されているものの殆 んどは低エネルギー入射方式を採用している。15~150 MeVのライナックやマイクロトロンから直接リングに 入射することで、全体のシステムを小型化するタイプの ものに、開発努力が注がれている。