実験技術

単バンチによる有機化合物の時間分解蛍光測定

田田 TF.

大阪大学基礎工学部

1. はじめに

真空紫外・可視領域の光は光化学反応過程のダ イナミックスを解明するために広く利用されてい る。とりわけ光反応の基本的な初期過程である励 起エネルギー移動,光イオン化,電子移動・電荷 移動過程、さらに溶液中の反応で重要な溶媒和を はじめとする種々の緩和過程を研究するには安定 したパルス光源が必要である。本質的に高速過程 であるこれらの研究はパルスレーザーの開発によ って急速に進歩した超高速時間分解分光測定技術 の積極的な利用によるところが大きい。一方、放 射光のパルス特性は当初レーザー光の種々の特性 と対比することにより,時間分解分光法の光源と しての有用性が強調された1-6。しかし現在では挿

1 0 -14

入型光源も含めてパルス放射光利用は極めて広範 囲にわたる研究分野に適用されるようにたってき たと考えられる。

分子,分子集団の構造や電子状態あるいは種々 の化学反応の様子が分光学などの手法で明らかに されると、時間分解型の手法によりそのダイナミ ックスを調べてメカニズムを解明する研究へと発 展するのはきわめて一般的である。単バンチ放射 光をパルス光源として利用する研究も、上記の研 究の発展過程の一環として位置づけられる。ダイ ナミックスの研究にどの程度の時間分解能が要求 されるかの一例として溶液中の分子の振舞いに関 係するタイムスケールを表1に示す。放射光利用の

Table 1 Approximate time scales of elementary molecular processes in solution.

IVR,内部変	<u>k.</u>	
	振動緩和	
	溶媒配向緩和	<u>_</u>
	電子的励起分子の寿命	
	分子の回転	
	電子移動	
光イオン化,	光解離	
	光異性化	
,	r ージ内反応	

10-13 10-12 10-11 $1 0^{-10}$ 1 () -9 70

(C) 1991 The Japanese Society for Synchrotron Radiation Research

特長として高いエネルギー領域の光を用いた内核 電子励起や二電子励起の関与する反応が考えられ るが著者の専門ではないのでこの表には含まれて いない。

放射光パルスを用いて光化学反応過程を調べ, その有用性を最初に示したのは1973年Lindqvist らによる研究であるⁿ。2-ナフトールの励起状態に おけるプロトン解離平衡反応の時間分解蛍光スペ クトルを測定した結果,ナフトールの蛍光スペク トルが減少してゆくとともにナフトレートアニオ ンの蛍光が増加し,励起後9nsの蛍光スペクトルは 定常状態のそれに一致することを示した。その 後,いくつかの研究がなされてきたが,本格的か つ系統的な化学反応ダイナミックスの研究はまだ 始まったばかりである。ここでは,分子研 UVSOR 施設利用で行った研究を基に測定法, UVSOR 光源の特性について述べ,研究例として 有機液体中のエネルギー移動に関する結果につい て報告する。

2. 時間相関光子計数法

放射線計測用として最初に開発された時間相関 計数法は,現在では紫外・可視領域の蛍光減衰曲 線の測定に広く利用されている。光電子増倍管と してマイクロチャンネルプレート(MCP)内蔵型を 用いることにより市販品をそのまま利用すること で測定系の時間分解能は10ps以下が期待され高速 ストリークカメラとほぼ同程度になった。この測 定法の特徴はダイナミックレンジが広いことであ り,正確な減衰曲線を得るのに適している。現在 の放射光パルス幅は数100psのものが多いが,高 輝度でより短いパルス放射光が得られるようにな ると10ps程度の時間分解能が期待される。また,

MCP光電子増倍管も真空紫外から軟X線領域の波 長まで測定できるものがあり、これらの波長領域 における高速時間分解測定が行われることを期待 する。MCP型光電子倍増管の時間分解能は、筆者 らが用いている可視・紫外領域の場合はMCP内の 電子走行時間の分布によっていると考えられるた め、入射波長依存性は無視し得る。しかし、真空 紫外からX線領域では、光電面から放出された2次 電子の初速度の波長依存性が時間分解能に影響す る可能性がある。UVSORで用いた測定系のブロ ック図を図1に示す。試料および光学系は油回転ポ ンプで排気した試料室内にあり、BL-1BとはLiF 窓を通してつながっている。光子計数法の原理に ついては田中氏による解説¹⁰があるのでここでは述 べない。時間分解能は CFDを調整することでサブ ピコ秒の色素レーザーパルスの半値幅として 30ps 程度である。

3. 単バンチ光パルスの特性

図1に示したシステムの観測系を一定に保ったま ま,一日間測定したSR光パルスの経時変化を図2 に示す。(A)はパルス幅を示したもので, ストーレ ッジリングのビーム電流に依存している。(a), (b) はビーム入射後間のない時のもので、午後の時間 の経過と共にビーム電流は減少し、パルス幅も狭 くなった。また、パルス波形のピークのシフトは 測定系全体の time walk を示している。 (A) は walkが特に大きかった日のものであり、通常は50 ~100ps程度であった。この原因についてはつきと めていない。(B)はLogスケールとリニアスケール を比較したもので、パルス波形はほぼガウス型を している。(C)は時間の経過と共に後続のバケット に電子が移って行くことを示している。最初のバ ンチからの光量が減少するに従って、後続パルス からの光量が増してくる。

以上が UVSOR における SR 光パルスの特性の 大略であるが,これを励起光源とした場合の蛍光 時間依存性の時間分解能と共にまとめると次のよ うであった。

(i) 観測された光パルス幅はビーム電流に依存し ており半値幅は 500~700psであった。ビーム電流 が減少するとパルス幅は狭くなり、1mA程度で約 400psの時もあった。

- Fig. 1 Block diagram of the time correlated single photon counting system. CFD: Constant Fraction Discriminator
 - TAC: Time-to-Amplitude Converter

MCA: Multi-Channel Analyzer

- Fig. 2. Time profiles of exciting SR light pulses measured at UVSOR BL-1B.
 (A) Typical time widths and channel shifts measured at (a) 9:36 AM, (b) 1:24 PM, (c) 4:15 PM, and (d) 5:55 PM
 - (B) Logarithmic and linear plots of the pulse (c) in (A).
 - (C) Long range time profiles, indicating a leak of electrons to the following bunches. (b), (c), and (d) correspond to (b), (c), and (d) in (A), respectively.

(ii) 観測系の time walk は一日間で 50~150ps で あった。

(iii) 蛍光寿命を deconvolutionによって解析した 結果,一つの指数関数で減衰する場合は 100ps 以 下まで精度よく解析可能である。蛍光の立ち上が り時間の解析は減衰時間の解析に較べて困難であ り,200~300psが限界と考えられる。この原因は 二つあり,一つは観測系の time walkに関係してお り,蛍光測定の前後で walkの少ない励起光パルス 波形を測定する必要がある。2番目の原因は,分光 器の迷光であり,蛍光強度が弱い場合は迷光との 相対強度で限界が決まる。迷光の量を正確に見積 ることは非常に困難であり,deconvolutionによる 解析において,time walkと共に適当に処理するし かない。

(iv)時間分解測定と直接関係している訳ではない が、図1の観測システムの利用法の一つとして微 弱蛍光の測定について触れる。蛍光の量子収量が 小さい場合,その寿命も非常に短い場合が多い。 従って,励起光パルスと同期した信号のみを計数 することでS/N比が高上する。この場合は多バン チモードでも測定でき,暗電流による雑音や迷光 も計数しやすい。蛍光量子収量が10⁻⁴~10⁻⁶程度の試 料を用いてその励起スペクトルを測定することが できた⁹⁰。

4. 放射光励起による液体デカリンの励起 移動

アルカン液体中に生成した高エネルギー状態の 反応や失活過程に関する研究は放射線化学,光化 学両分野において多くの研究がなされてきたが, その初期過程はまだ解明されていない。ここで は,放射光励起によるデカリンからのアントラセ ンおよびビフェニルへの励起移動初期過程につい て述べる。アルカン溶液にパルス放射線を照射す ると溶質の三重項状態が数nsの時間領域で生成す る。また,ピコ秒YAGレーザー4倍波(266nm) の多光子励起によるシクロへキサンの過渡吸収ス ペクトルの測定によると S_n ← S₁吸収スペクトルと 考えられる吸収帯以外に約 100ps 程度の時定数で 減衰する吸収が存在する¹⁰⁰。例としてシクロへキサ ン中のピレン三重項状態の生成についてパルスラ ジオリシスとレーザーホトリシスの結果を比較す ると,電子線照射の場合,励起後数10ns以降に生 成する三重項は溶質のアニオンとカチオンの対間 再結合により定量的に説明されるが数10ns以内に 生成する三重項については何らかの溶媒の中間体 を考える必要がある。レーザーホトリシスの場合 は溶質のイオン種は観測されないが励起後数10ps からナノ秒の時間領域にかけて三重項が生成して くる¹¹⁰。上記のような問題に関連して,溶質一重項 へのエネルギー移動を調べる目的で研究を行った。

測定は図1に示したように分子研 UVSOR 施設 のビームライン IB または7B(共に瀬谷・波岡型 Im分光器)を用いた。試料は MgF₂窓付のセルに いれ Ar置換した。セルの表面からの蛍光を凹面鏡 で集めて測定した。アントラセンおよびビフェニ ルの濃度は 2 × 10⁻⁴~2 × 10⁻²M の範囲で変化さ せ、測定温度は 27 °Cである。

図3に測定例と次に述べるモデルで解析した結果 を示す。励起エネルギー移動は、本来、エネル ギー供与体(B*、ここではデカリンの蛍光状態)と 受容体(A、アントラセンまたはビフェニルの基 底状態)との距離や配向に依存した遷移確率で与 えられるが、ここでは、拡散過程で近着いた B'と Aが臨界距離Rで反応速度定数 k.の確率で励起移動 すると考える。即ち

Fig. 3 The fluorescence decay curve of decalin with 3.3mM anthracene and its simulation with eq. $I(t)=X_1 \exp \left[-t/X_2 - \sqrt{t}/X_s\right]$. X₂=55.0Ch⁻¹, X₃=42.2Ch^{-1/2}, χ^2 =1.26, Durbin – Watson=1.83.

適当な境界条件の下で拡散方程式を解くと^{12.13}時 間に依存した反応速度として

$$k(t) = \frac{N'}{k_{D}^{-1} + k_{e}^{-1}} [1 + \frac{k_{e}}{k_{D}} \exp(x^{2}) \operatorname{erfc}(x)]$$
(2)

$$\operatorname{erfc} (\mathbf{x}) = \frac{2}{\sqrt{\pi}} \int_{\mathbf{x}}^{\infty} \exp(-\lambda^{2}) \, \mathrm{d}\lambda$$
$$\mathbf{x} = \frac{\sqrt{\mathrm{Dt}}}{\mathrm{R}} \left[1 + \frac{\mathrm{k}_{\mathrm{e}}}{\mathrm{k}_{\mathrm{D}}} \right]$$

を得る。ここに、DはB[•]とAの拡散系数の和、 k_{D} = 4 π RDは拡散による速度定数、N'はアボガド ロ数である。

X>>1の場合, (2)式は近似的に(3)式で与えら れる。

$$\mathbf{k}(t) \simeq \frac{N'}{\mathbf{k}_{\rm D}^{-1} + \mathbf{k}_{\rm e}^{-1}} \left[1 + \frac{R}{(1 + \mathbf{k}_{\rm D}/\mathbf{k}_{\rm e})} \sqrt{\pi \, \mathrm{Dt}} \right]$$
(3)

B'の蛍光強度 I(t)は [B']に比例するから(1)式を積 分して(3)を代入すると観測されるデカリン蛍光強 度の時間依存性は(4)となる。

$$I(t) = I_{0} \exp \{-at + b\sqrt{t}\}$$

$$a = \frac{1}{\tau_{B}} + 4\pi DN' \cdot \frac{Rk_{e}}{k_{D} + k_{e}} \cdot [A]$$

$$b = 8\sqrt{\pi D} N' \left(\frac{k_{e}R}{k_{D} + k_{e}}\right)^{2} [A]$$
(4)

また、Aの蛍光の立ち上がりは(4)と直接励起され た成分の和で与えられる。種々の[A]に対する解析 は必ずしも満足のゆくものではないが、結果だけ を述べるとアントラセンの場合 $\tau_A = 5.3$ ns、 $\tau_B =$ 2.8ns、R = 54 Å, k_e = 1.6 × 10¹⁰M⁻¹s⁻¹, ビフ ェニルの場合、 $\tau_A = 16.6$ ns、R = 22 Å, k_e = 4.0 × 10¹⁰M⁻¹s⁻¹を得た。以前、同じ系の結果を次 の反応式(5)として、デカリンの高励起状態から蛍 光状態 B[•]と無蛍光性のエネルギー供与体Xが生成 するとして解析した結果を報告した¹⁴⁰。

$$\alpha \qquad k_{2}$$

$$B^{\ddagger} \rightarrow B^{\ast} + A \rightarrow B + A^{\ast}$$

$$1 - \alpha \qquad k_{2}'$$

$$X + A \rightarrow Y + A^{\ast}$$
(5)

この場合はアントラセンの蛍光の立ち上がりを2 成分の指数関数として解析することになるが、 time walkを適当にパラメーターとして動かすと蛍 光の時間依存性を解析することが出来、Xの寿命 として約 lns, $k_2 = 2.1 \times 10^{10} M^{-1} s^{-1}$, $k_2' = 6 \times 10^{12} M^{-1} s^{-1}$ を得た。(1)式の方がメカニズムとして は考え易いが、ここで強調したいことは技術的に 言って、パルス幅と同程度の時間領域が重要な非 指数関数や多成分の解析をする場合 fitting に任意 性があるということである。

5. おわりに

放射線光パルスを用いた蛍光減衰曲線の測定に 関して,主として技術的な面について述べた。こ こで用いた時間相関光子計数法はほぼ確立した手 法として広く利用されているものであり,目新し い点はない。放射光とレーザーとの組み合せや放 射光の周波数安定性を利用した測定法¹⁵⁾などマシ ングループとの共同研究による真空紫外より高い エネルギー領域の時間分解測定が新しく開発され ることを期待する。

ここで述べた測定は UVSOR 施設の渡辺誠,春 日俊夫(現広島大)両助教授を始め,多くの職員 の方々にお世話になり,質の良い単バンチ動作を して頂いた。この場を借りて深く感謝する。ま た,測定は大学院生の萩原昌明,西川信也両君に 手伝ってもらった。解析は大阪大学大型計算機セ ンターを利用した。

文献

- R. Lopez Delgado, Nucl. Instr. Meth. 152 (1978) 247.
- U. Hahn, N. Schwentner, and G. Zimmerer, Nucl. Inst. Meth. 152 (1978) 261.
- N. Schwentner, U. Hahn, D. Einfeld, and G. Muhlhaupt, Nucl. Instr. Meth. 167 (1979) 499.
- 4) V. Rehn, Nucl. Instr. Meth. 177 (1989) 193.

- J. H. Munro and N. Schwentner, Nucl. Instr. Meth.
 208 (1983) 819.
- S. Leach, in: Laser Applications in Chemistry, eds., K. L. Kompa and J. Wanner (Plenum, New York, 1984) 35.
- L. Lindqvist, R. Lopez Delgado, M. M. Martin, and A. Tramer, Proc. Int. Symp. for Sychrotron Radiation Users, Daresbury, 1973, eds., G. V. Marr and L. H. Munro, p. 257.
- 8) 田中健一郎,「放射光」, vol. 4, 1991, p. 29.
- Y. Inoue, Y. Daino, A. Tai, T. Hakushi, and T. Okada, J. Am. Chem. Soc., 111 (1989) 5584.
- H. Miyasaka and N. Mataga, Chem. Phys. Lett., 126 (1986) 219.
- 11) H. Miyasaka, H. Masuhara, and N. Mataga, 94 (1990) 3577.
- 12) F. C. Collins and G. E. Kimball, J. Colloid Sci., 4 (1949) 425.
- 13) R. M. Noyes, Prog. React. Kinet. 1 (1961) 129.
- 14) T. Okada, M. Hagihara, K. Kamada, UVSOR Act. Rep. 1988; 岡田, KEK Proc. 91-1 (1991).
- E. Gratton, D. M. Jameson, N. Rosato, and G. Weber, Rev. Sci. Instrum. 55 (1984) 48