解説

高圧力下の単結晶X線回折実験

浜谷 望

お茶の水女子大学理学部物理学科

Single-Crystal X-Ray Diffraction Experiments at High Pressure

Nozomu Hamaya

Department of Physics, Faculty of Science, Ochanomizu University

Structural information for a full understanding of the behavior of matter is best obtained by singlecrystal diffraction techniques. Recent advances in high- pressure technologies and the advent of very brilliant x- ray sources have greatly extended the pressure and temperature ranges accessible to singlecrystal diffraction experiments. In this article, we review the developments of single- crystal highpressure diffraction studies, including those using state- of- the- art techniques on synchrotron sources.

1. はじめに

現在,ダイヤモンドアンビルセルを使って発生 できる圧力は300GPa(=3Mbar~300万気圧) に達している。このような超高圧を必要とする強 い動機は最も単純な元素一水素の金属化の検証に あり,容積1pℓの試料について紫外から赤外にわ たる波長領域で様々な分光測定法が駆使されてい る¹⁾。また,元素が超高圧下で示す結晶構造の系統 性も,300GPaの領域で放射光X線を用いた粉末 X線回折法によって精力的に研究されている²⁾。一 方,超高圧力技術のR&Dは低圧力発生技術にも フィードバックされ,今日,10GPaの圧力は手軽 で身近なものになってきている。「高圧技術」の バリヤーが外れると,1気圧のもとで確立された 色々な実験手法を適用して,圧力に対する物質の 応答を温度に対する応答と同じレベルで理解した くなる。そのためには,単結晶を試料とする高圧 実験が不可欠になる。

高圧下の物質の性質を調べる上でまず必要なの は結晶構造の知識である。これまで、数多くの物 質の相平衡図や状態方程式が粉末X線回折実験に よって決定されてきた。しかしながら、次のよう な対象について粉末実験は力不足になる:(i)複雑 な結晶構造,(ii)弱い散乱能しかもたない物質の 構造,(iii)原子位置(電子分布)の平均構造から の時間・空間的ゆらぎ,(iv)本質的に小さな散乱 断面積しかもたない現象。これら(i)-(iv)に関す る知識は、1気圧のもとでは単結晶を試料とする 回折・散乱実験から比較的容易に得ることができ る。その高圧への拡張は以前より試みられていた が,通常のX線源で測定可能な対象,およびデー タの量・質には自ずから限界があった。しかし後 にみるように,放射光源の出現は高圧単結晶X線 回折実験の状況を大きく変えつつある。

ここでは、まず、単結晶回折実験用の圧力技術 がどのようなものかを知って頂くためにそのポイ ントを述べる。次に、これまでの研究例をいくつ かあげ、放射光と組み合わせた二つの研究、「固 体水素、固体ヘリウムの結晶構造」と「誘電体の 圧力誘起整合 – 不整合相転移」について少し詳し く紹介した後、今後を展望する。

2. 高圧技術

2.1 装置

一般に,装置の形状は「最高圧力」と「観測可 能な逆格子空間の広さ」の二つの競合する因子で おおむね決まる。当然,大きなX線用窓をとるほ ど到達圧力は低くなる。X線が通過する部分を原 子番号の小さな物質でつくることは大前提で,圧 力精度,使用温度などが設計の条件に加わる。

(1)ベリリウムシリンダー型

ベリリウムを圧力容器とするデバイスは早くか ら考案され、ふつう、0.5GPa以下で使用される。 気体または液体を試料への圧力伝達体に使うので 純静水圧を連続的に印加することができる。圧力 値を求めるにはブルドン管式圧力計を用いるのが 一般的で,ハイゼ社の製品であれば△P/P~0.1% の精度が保証されている。直径1~2mm,長さ数 mmの大きな試料を装填できる。Morosin and Schirber³は、80K < T < 300K で 4 軸回折計上 で構造解析ができるセルを製作した。肉厚の試験 管を逆さにしたような裸のBe シリンダーは,視角 が大きく、液体窒素を直接吹き付けて温度を変え るようになっている。Moudden et al.⁴ は, 2 θ < 52°, T > 77Kの条件で写真法・位置敏感型検 出器による散漫散乱の測定を目的に、ヘリウムガ スを伝達体に用いるセルを開発している。このセ ルでは, Be シリンダー内の試料のすぐ近くにビー ムストッパーを取り付け不要な散乱を抑える, 高 圧部にある試料をそのホールダーごと外部から磁 石を使ってω軸の回りに回転させる, などの回折 実験のための工夫がみられる。

このタイプのセルでは、約10mm厚のBeを通過 してX線の強度が弱まる上に、Beからのブロード な回折によってバックグラウンドが高くなる不利 がある。しかし、平行性が良く輝度の高い放射光 X線と分光結晶を組み合わせることでこの難点は 克服することができる。図1に3.4で述べる実験に 用いたセルの見取図を示す⁵⁹。セルの形状はそれ以 前のものと本質的に変わらない。銅ベリリウム製 ジャッケットの周囲に銅管を巻き、それに循環水 または窒素ガスを流して室温から160Kまでの温度 範囲をカバーしている。

(2)ダイヤモンドアンビルセル (DAC)

単結晶X線回折用DACは米国NBSで開発が始 まり[®],その後反射型[¬],透過型[®]の様々なモデル がつくられた。現在ひろく使われているもののプ ロトタイプは図2に示す透過型のMerrill-Bassett 型[®]である。超高圧を狙う粉末用DACと大きく異 なるのは、ダイヤモンドの受け台がBe製で広いX

Fig. 1 Sectional view of a beryllium – cylinder pressure cell (from ref. 5).

Fig. 2 Merrill - Bassett cell (from ref. 9).

線用窓 $(2\theta < 100^{\circ})$ をもつことと、セルが薄くコ ンパクトなことである。圧力値は、試料と一緒に 入れるルビーのR」蛍光線(レーザー光で励起す る)の波長が圧力変化するのを利用して求める。 通常, 5GPaまでの圧力範囲で使用されるが, 15GPaを得た例もある¹⁰⁰。ヒーターを組み込んで の高温実験、クライオスタットに取り付けての低 温実験も容易に行える。取扱も簡単である。大き さ0.1×0.1×0.05mm³程度の単結晶は、液体、 または圧縮した気体(He,希ガス)の圧力伝達媒 体と圧力校正用のルビー片(数µm)とともに, 金属ガスケットにあけた約0.3mm径の穴に入れ る。あとは3本のネジを順に回し、ダイヤモンド 間の距離を縮めてガスケットを押しつぶしながら 加圧するだけである。低温実験では加圧のたびに 室温にまで戻さなくてはいけないのが不便であ る。なお、Mao and Bell¹¹⁾ は P > 20 GPa を狙 った開口角の小さな単結晶用セルを開発してい る。また, Schiferl et al.¹²⁾ は特製のBe受け台 を使い 20GPa を発生している。

放射光の特性をうまく利用すると最高圧を引き 上げることができる。例えば、高エネルギー(短 波長)の単色X線を使うと、小さな開口角を持つ セルでもアクセスできる逆格子を狭めることはな いので、受け台としてベリリウムの代わりにより 引っ張り強度の大きいタングステンカーバイドを 使うことができる。また、エネルギー分散法を採 用すると2θを低角に固定したまま、連続X線スペ クトルの最高エネルギーまで逆格子の観測が可能 になる。実際、3.2に挙げる実験ではこの方法を用 いている。

2.2 圧力伝達媒体

直接試料を加圧する圧力伝達体の選択は重要で ある。通常,静水圧縮を目的にするので,粘性係 数が小さく差応力をすばやく緩和する媒体が望ま しい。応力勾配が大きくなると結晶のモザイクネ スが増加し,ついには結晶が壊れてしまう。表1 にこれまでに媒体として使われている液体,気体 の室温での特性を示す(文献13より抜粋,修 正)。一見,気体の静水圧領域は狭いように見え るが,ルビーR₁,R₂蛍光線の半値幅や試料のロッ キングカーブの幅で評価すると,メタノール・エ タノール混合体の固相よりも分子性結晶となった 気体の方が静水圧の程度が良いようである。この 表には無いが,低温・高圧の中性子回折実験で多 用されるフロリナートではシャーベット状に固化 した後も応力勾配が比較的小さいとされる。

メタノール・エタノール混合体は扱い安く室 温・<10GPaの実験に適している。低温実験では 気体媒体の使用が望ましい。DACへの封入は(i) 低温での液体状態,(ii)室温で約0.2GPaまで圧縮 して密度を増加させた臨界状態,のどちらかで行 う。(ii)の手順はそれ専用の少々大がかりな装置 を必要とする。

3. 研究例

研究目的は様々だが回折実験としてみると二つ のアプローチに大別できるだろう。第一は構造解 析的,すなわち,できるだけ広い逆格子空間を観 測して,多くのブラッグ反射の位置・強度を測定 し,平均構造を決定しようとするアプローチであ る。それに対して,平均構造からのズレを反映す

Medium	Freezing Pressure at RT.(GPa)	Quasihydrostatic Pressure Range (GPa)
Methanol : ethanol 4 : 1	10.4	~20
Methanol : ethanol : water 16 : 3 : 1	14.5	~20
He	11.8	> 2 3 ^{B)}
Ne	4.7	10 ^{B)}
Ar	1.2	
Xe	0.4	< 5
H_2	5.4	20 ^{B)}
N ₂	2.4	13

Table 1 Some pressure media and their useful pressure ranges (modified Table 1 in ref. 13).

A) Glass transition pressure

B) Pressure where a single crystal begins to break up

る特定の微弱な散乱を観測して,空間変調や臨界 現象をともなう相転移の構造的側面を明らかにし ようとするのが第二のアプローチである。

3.1 平均構造の解析

出発試料には二つの形態がある。ひとつは常 温・常圧下ですでに単結晶化している場合で, FingerとHazenによる鉱物とその類似物質につい ての一連の研究¹⁴⁰, Nakagiri et al.¹⁵⁾:マグネ タイト, Fujii et al.¹⁶⁾: NiS₂, Endoh et al.¹⁷⁾: KH₂PO₄・KD₂PO₄等の実験がある。Sowa et al.¹⁸⁾ は, 放射光と従来線源を用いて行ったAlPO₄(P3,21) の構造解析の結果を比較している。X線のダイヤ モンドによる吸収を小さくするために波長を0.54 Åに合わせ, 2 θ < 54°の範囲で1140個の基本反 射と 501 個の超格子反射を測定した。放射光を使 うことにより超格子反射の計数統計が格段に向上 している。また,弱い一次相転移後も単結晶性が 保たれた高圧相を解析した例にKudoh et al.¹⁹⁾ : ZrO₂ (P2₁/c) がある。

一方、常圧で気体・液体状態にある物質や、固 相間の圧力誘起一次相転移を経た後の高圧相の結 晶構造を単結晶で決める場合には、高圧力下で結 晶を育成しなくてはならない。一般に、液相や臨 界状態から単結晶を成長させるのは比較的容易だ が, 固相一固相転移後に単結晶を得るのは難し い。驚くべきことに、1973年のきわめて初期の段 階で, Piermarini and Braun²⁰⁾ が目指したのは 後者であった。彼らはCCLの液相一固相 I 一固相 Ⅱ相転移を経た固相Ⅲ(単斜晶系)の構造を写真 法で解析している。Schiferl et al.¹² が固体酸素 ε相(単斜晶系)の構造解析を成功させた際に用 いた手法は注目に値する。まずDACに充填した酸 素を ε 相が安定な 20GPa まで加圧する。そこで融 点直下の630Kに加熱した後ゆっくり冷却してスト レインアニーリングを行う。その結果、試料室内

(~1nℓ)に9個の単結晶が成長し,4軸回折計・ 回転対陰極線源を使ってそれぞれの結晶からの反 射を識別して構造を決定したというものである。 融解状態からの,あるいはストレインアニーリン グによる結晶育成技術,互いに異なる方位の複数 個の単結晶があるときの構造解析法は,今後さら に発展させる必要があるだろう。

高圧力下において電子密度分布まで解析した例 は、Finger et al.²¹⁾: Ni₂SiO₄(スピネル相)の みである(筆者の知る限りでは)。電子系に及ぼ す圧力効果が大きいこと考えると、電子密度分布 についての知識の重要性は非常に高い。

平均構造決定のかなり特殊なケースとして, Fujii et al.²²⁾ による人工格子の積層方向の構造 の圧力効果を調べた研究がある。二種類の金属を 数ナノメートルの厚みで交互に積層させたAu/Ni, Mo/Niでは弾性的性質の異常に注目している。や はり数ナノメートル厚でエピタキシャル成長させ た半導体格子PbSe/SnSeでは,薄膜であることが 構造相転移圧力に及ぼす影響を調べている。いず れの場合も、サブミクロンのオーダーの厚みの試 料をDACに入れるのできわめて弱い散乱強度しか 得られず,放射光X線の使用が不可欠になってい る。

次に、「気体からの単結晶の成長」、「非常に 小さい散乱能」、「微小結晶」の三重苦を乗り越 えて固体水素と固体へリウムの構造決定に成功し た、米国カーネギー地球物理学研究所 Mao グルー プの放射光実験^{23,24)}を紹介する。

3.2 n − H₂, ⁴ He 固体の結晶構造 (1)背景

固体物理学,宇宙・惑星物理学において,この 二つの物質が高密度状態にあるときの性質を知る ことが基本重要課題であることは,今更強調する までもないであろう。過去,数多くの理論的研究 が高圧力下の結晶構造や状態方程式を予測してき た。特に固体水素の金属化の可能性が指摘されて からは,光学的測定を中心とした実験が高圧技術 の進歩と共に100GPa以上の圧力で精力的になさ れるようになった。ところがつい最近まで,相平 衡や状態方程式を議論する上で最も基本となる固 体の結晶構造は知られていなかったのである。粉 末X線回折法では,散乱能が極端に小さくしかも 10nℓ以下の容積しかとりえない試料から有効な信 号を取り出すことは不可能で,単結晶の使用が必 須の条件であった。

実は放射光実験以前に、凝固点(300K, 5.4GPa) をわずかに越えた圧力 5.6 GPa での n − H₂の構造 が、やはりカーネギーグループのHazen et al.²⁵⁾ によって管球X線源(46kV, 30mAで運転)を使 って決められている。装置は、パイロリティック グラファイトで単色化したMoK α入射X線,4軸 回折計, DAC^{III} のごく普通の組合せである。試料 の大きさは直径150 μm,厚さ50 μm以下。プ リセッション写真による予備実験では、ダイヤモ ンドの反射とベリリウム受け台のデバイーシェ ラー線のみが観察され、固体水素からの回折は検 出されなかった。そこで4軸回折計によるピーク サーチを実行した結果,計数率が50cps(そのう ちバックグラウンドは15cps)の反射を見いだし た。結果的に、これはhcp構造の最強線002と指 数付けされた。全部で19個の反射を測定して解析 を行い, 無秩序に回転しているH₂分子がhcp構造 を組む、と結論している。

5.6GPaから圧力を上げたところ、002反射の強 度はバックグラウンドを下回ってしまい検出不能 になった。この原因は、試料の体積減少にともな う有効照射面積の低下とモザイクネスの拡大によ るピーク強度の減少にある。このような通常X線 源の限界を見極めた上で、20GPaを越える圧力下 で放射光実験がなされた。

(2) NSLS, CHESS における実験

n – H₂の実験²³⁾ はブルックヘブン国立研究所 NSLSのBL – X7A(ベンディングマグネット) で, ⁴H e については ²⁴ コーネル大学 CHESSのウ イグラーラインA – 3 で行われた。以下に述べる 実験法は両者で共通している。

光学系の最大の特徴は、連続X線を利用するエ ネルギー分散法の採用である(図3)。スリット で10μm角にコリメートされた入射ビームは、ω $-\chi$ の二軸回折計に取り付けられたDAC内の直 径50 μm, 厚さ10 μm (容積20p ℓ!)のガス ケット穴-試料室に照射される。臨界状態から成 長させた単結晶の回折線は 50 μ m × 200 μ m, 100 µ m × 1mmの非常に狭い二つのスリットでコ リメートされて、2 θ = 20°に固定した半導体検出 器(SSD)に向かう。ω, χ方向の角度分解能は それぞれ0.1°, 1~2°であった。この光学系の長 所は,20の自由度をなくすることでピークサーチ に要する時間を大幅に節約できる点にある。さら に、連続X線で圧力校正用のルビーR₁線を励起す ることが可能になり、光学系を壊さずにX線が照 射している位置の圧力を測定できることも大きな

メリットである。逆に、運動量分解能がSSDのエ ネルギー分解能~10⁻²を越えることができない、 多重散乱や蛍光の励起によるバックグラウンドの 増加、などが問題点として残る。

(3)固体水素

新たに10.1, 15.0, 21.4, 26.5GPaの4点で 測定が行われた。いずれの圧力でもhcp構造が安 定で,対称性の変化は見いだされていない。特 に,H₂分子の方位の秩序化に注目しているが,そ の兆候はみられない。しかし,軸比c/aの値が5.4 GPaの1.630から26.5GPaでの1.594へ連続的に 減少していることから,H₂分子の回転が徐々に積 層面内に拘束されつつあると推定している。得ら れた状態方程式を光学測定や理論の結果と比較し て議論しているが,その詳細は原論文を参照され たい。

表1にもあるように、固体水素では約20GPaで 多結晶化が始まる。それは結晶方位と散乱強度の

Fig. 3 Block diagram of the energy- dispersive single- crystal diffraction optics used for the determination of the crystal strucure of solid hydrogen at National Synchrotron Light Source, USA. Pressure is measured by ruby fluorescence excited by polychromatic x- ray radiation (From Jephcoat A. P., Proc. ESRF Workshop on Single- Crystal Diffraction and Scattering at High Pressure, ed. A. K. Freund and C. Riekel, (ESRF, 1989) p. 148.

急激な変化から知ることができる。15GPa(図4 (a)参照)において反射の計数率が8cpsであった ものが,最高圧力では0.05cpsに減少したと報告 されている。それでも,格子定数,状態方程式を 決定することができたのは,高いS/N比を実現し ているためと思われる。

(4)固体ヘリウム

6個の反射から求めた23.3GPaまでの結晶構造 は、理論が予測していたfcc,bccではなく、hcp であることが判明した。この圧力範囲でc/aは理 想値の1.633をとっている。相平衡の観点からみ ると、T<2K・P>2.5MPaでの存在が知られて いるhcp構造と同じ相なのか、低温・P>0.12GPa で現れるfcc構造との相関係はどうなっているかな ど、まだ解決すべき問題が残っている。新たに得 られた状態方程式を再現するには、低圧では非調 和振動効果を取り込む必要があるものの、高圧で は擬調和振動近似がよく成り立つとしている。

気体状態にあるHeは粘性が小さいことで知られ るが、固体になってもその性質を保っているらし い。それを示す事実として、加圧によってガスケ ットにあけた試料室の形が大きく変形するのに追 随して、He結晶も変形するのが観察されている。 20GPaにおかれたH₂では結晶が壊れて多結晶化が 進むのと対照的である。15.6GPaで装置分解能と 同じ0.1°であったモザイクネスは、23.3GPaにな っても0.5°に増加しただけであった。図4(b)の 101 反射プロファイルと固体水素のそれ(図 4(a))に現れているS/N比の差は、散乱能だけ でなく結晶性の違いも反映していると思われる。 この時、He単結晶中にあるルビーのモザイクネス は0.1°のまま変化していない。従って、全ての物 質の中でHeが最も高い圧力まで良好な圧力環境を 保持できる、すなわち、圧力媒体に最適な物質で あると言える。

3.3 非平均構造

観測する衛星反射や超格子反射の強度は、基本 ブラッグ反射に比べて非常に弱いのが普通であ る。従って強い線源と高いS/N比をもつ光学系が 要求される。その意味で、McWhan et al.²⁶⁾が 2H – TaSe₂(六方晶)の整合、不整合電荷密度波 (CDW)状態を調べた低温高圧実験は、実験室系で

Fig. 4 Representative energy-dispersive x- ray diffraction spectra for (a) solid hydrogen (from ref. 23) and (b) solid helium (from ref. 24) with the hcp structure (101 reflection).

Fig. 5 Incommensurability, δ , vs temperature at P~0, P=1.7 and 4.1 GPa in 2H - TaSe₂ (from ref. 26).

Fig. 6 Pressure – temperature phase diagram of 2H – TaSe₂ (from ref. 27).

は最高の条件を整えたものといえよう。ヘリウム 循環式冷凍機に取り付けたMerrill-Bassett型DAC を使って、P<4.5GPa、T>10Kの範囲をカバー している。光学系は、Mo回転対陰極型線源からの Ka線を湾曲パイロリティックグラファイト(004) で単色化して集光し、試料からの回折X線をフッ 化リシウム(200)で分光するというものである。 図5に、CDW波数ベクトル $q = (1 - \delta) a/3 \circ$ るの温度依存性を、いくつかの圧力で示してあ る。1気圧ではT ≤ 90Kで整合相、90K < T ≤ 122Kでは不整合相が安定だが、1.7GPaになると 整合相は存在しない。しかし、4.1GPでは、100K 以下で整合相が再び現れることが分かる。その後 の中性子回折実験の結果も加えて作成された温度 - 圧力相図は²⁰,図6に示したように大変複雑な 相関係を明らかにしている。なお、この実験で使 われたメタノール・エタノール4:1の圧力媒体 が、測定時の温度サイクルで凍結・融解を繰り返 すことによって試料の歪状態を変化させ、転移温 度、転移の鋭さ、 δ (T)曲線の傾きをなまらせるこ とが指摘されている。相互作用の微妙なバランス で成り立つ系では、気体媒体が必要なことを示し ている。

その他,衛星反射に注目して結晶構造の整合-不整合逐次相転移を調べた例に,Moudden et al.⁴ :チオ尿素がある。高圧下で相転移の臨界散 漫散乱を測定する試みは,O kazaki et al.²⁸⁾が NaNO₃について放射光X線を用いて行っている。

次の章では,筆者が阪大基礎工・筑波大物質工 在籍中,黒岩芳弘君(現千葉大理),下村晋君, 藤井保彦氏を中心とするグループと共に,高エネ ルギー物理学研究所フォトンファクトリーで行っ た実験について述べる。ここでは,とくに,温度 と圧力の両方をパラメータにすることで物質が示 す構造の特質が明らかになること,高圧力下でも 常圧と同程度の質の回折データが得られることを 強調したい。

3.4 誘電体の圧力誘起整合 – 不整合相転移 (1)テトラメチルアンモニウム四塩化錯塩

80 100 120 140 160 PRESSURE (MPa) Fig. 7 A part of pressure - temperature phase diagram

of [N(CH₃)₄]₂MnCl₄. Hatched areas correspond to commensurate phases. Broken curve denotes the contour of equal wave vector. (From ref. 30)

を挙げる。図中の分数は c 軸方向の変調波数 ζ (q = ζ c) を表しており,例えば ζ = 3/7相の c 軸 の長さは高温相のそれの7倍になっている。ハッ チのかかっていない不整合領域では,ζが連続的 に変化する。したがって,温度を固定して加圧し ていくと,波数は整合相内では一定,不整合相内 では減少というできの悪い階段に似た曲線 – 不完 全な悪魔の階段 – を描くことが分かる。5/12相を 除いて,11倍以上の周期をもつ整合相の安定領域 の幅については実験的な不確定さが残っているも のの,非常に狭い温度・圧力範囲で様々な周期の構 造が奇妙な形の存在領域をもつことは,各構造が 競合する相互作用の微妙なバランスのうえで安定 化していることを示唆している³⁰。

図7の相図には、さらに興味深い事実が含まれ ている。どれでも良いが一つの整合相に注目する と、その波数 $\zeta = P/Q$ は、隣合う二つの整合相の 波数P'/Q'、P"/Q" とP/Q = (P' + P")/(Q' +Q")の関係で結ばれていることに気が付く。0/1 と1/1を種にしてこの関係を用いて得られる有理 数列-フェアリー級数は、フラクタルやカオスの 出現に深く関わっている³²⁰。高次の整合相の幅を 精度良く決めることができれば、相図にひそむフ ラクタル性を明らかにできる可能性がある。

以上のような性質をもつ物質の相転移過程はど のようなものだろうか?これが放射光を使う高分 解能実験の目的であった。理論³³⁾が予想するス トーリーの一つは次のようなものである。転移点 付近の不整合相はディスコメンシュレーション (DC) と呼ばれる分域壁で区切られた多くの(転移 後現れる) 整合相の分域からなると考える。空間 変調の位相は分域内で一定、DCで急激に変化す る。転移点に近づくにつれ、整合相分域が成長し てDC間の距離が次第に広がり、ついにはDCが消 滅して整合相だけになる。この過程を回折実験で みると,変調に起因する衛星反射の不整合な波数 とが外場の変化と共に連続的に整合相の波数と。に を表し、距離の分布は衛星反射の幅に反映され る。また、変調がより矩形的になることに対応し て、高次の衛星反射が発達するはずである。も し、DCが不純物などの欠陥によってランダムな間 隔でピン止めされるようなことがあると、衛星反 射のブロードニングが見られることになる。実 際,以上のようなピクチャーが A₂BX₄ファミリー の一員である Rb₂ZnCl₄の不整合-整合相転移に当 てはまることが知られている³⁴⁾。

(2)フォトンファクトリーにおける実験

圧力セルには前述のベリリウムシリンダー型を 用い,温度,圧力はそれぞれ±0.02K,±0.4MPa (4bar)の精度で制御した。試料の取り付け方や圧 力発生装置の詳細については文献5)を参考にして 頂くことにして,ここではHuber6軸回折計(BL - 4C)³⁵⁾での高圧実験のパフォーマンスを中心に 話を進める。

直径40cmのオフセンターχサークルは, 圧力セ ルをのせるのに十分なスペースと耐荷重を備えて いる。自作のホールダーにのせたセルをクライオ スタット用アクセサリーを利用して取り付る。ハ ッチの外に置いた加圧ポンプからセルにつながる 直径6mmのステンレス管は、2 θ ・ ω ・ χ 軸の回 転に対して若干の張力を及ぼすが問題はない。通 常、調整時を除いて ϕ 回転は固定しておく。

入射X線の波長は、ゆるくサジタルフォーカス したSi (111) 二結晶モノクロメータで0.900 Åに 設定した。集光効率を低くしたのは、Si 結晶の永 久歪によって形の良いビームを得るのが難しかっ たために過ぎない。シンチレーション検出器の前 に分光結晶Si (111) を置くことによって分解能が 向上すると同時にベリリウムからの邪魔な散乱を 抑えることができた。

試料結晶は(h0l)面が散乱面となるようにセットし,温度・圧力条件を変える度に400と402の 基本反射で方位を決めて,主に(4,0,ζ)の位置 にある衛星反射を観測した。この設定ではω方向 がほぼ c*方向になるので,衛星反射の位置や幅を 精度良く求めるには,結晶のモザイクネスができ

WAVEVECTOR (UNITS OF C*)

Fig. 8 The sequence of scans of the 40ζ satellite reflection with increasing pressure near $\zeta_{o}=3/7$ at 21.0 °C . ζ locks discontinuously onto 3/7 at 112.5 MPa.

るだけ小さいことが望ましい。400 反射のロッキ ングカーブを測定した結果,半値幅は約10秒と十 分小さく, $\Delta Q = 1.2 \times 10^{-4} \text{Å}^{-1}$, $\Delta \zeta = 2.3 \times 10^{-4}$ と求められた。ちなみに,文献30)の通常線 源・平板Ge (111) モノクロメータ・位置敏感型 検出器 (PSD)の組合せでは $\Delta Q = 10^{-3} \text{Å}^{-1}$ であ った。不整合40 ζ衛星反射の積分強度は高温相と の境界から離れるにつれて増加して,21.0 °Cの 3/7相付近では400基本反射の約14%に達した。

(3)不整合相-3/7整合相転移

温度を21.0℃に固定して圧力スキャンを行い, 不整合相-3/7整合相-不整合相へと相転移させ たときの40 ζ衛星反射プロファイルを図8に示 す。加圧と共に低波数側へ連続的にシフトしてき た反射は,112.5MPaでζ。=3/7 (=0.4286) に突然ロックインする。しばらく3/7にとどまっ た後,118.5MPa付近で再び不整合相へ転移する。 変調波数の圧力変化を図9(a)に示す。これらの転 移はそれぞれ約2MPaの圧力ヒステリシスを伴う ので一次相転移である。

さて、衛星反射プロファイルで最も目をひくの は、3/7整合相内と不整合相内での形の違いであ ろう。 $\zeta_{\circ}=3/7$ にロックした衛星反射は対称形 で、その半値幅がai、ci方向共に装置分解能に一 致している(図9(b))。したがって、3/7相が コヒーレントな領域は少なくとも数ミクロンに及 ぶことが分かる。一方,不整合相内では, a*方向 の幅は装置分解能と同じだが、 c*方向には非対称 な高波数側にテイルを引いた「フカの背ビレ」形 をしている。これを非対称なピーク関数にフィッ トしてみると、低波数側の半値幅(L-HWHM) は装置分解能に一致しており、幅の広がりは高波 数成分が負うことが分かった。この原因として, 圧力を上げていく過程で現れた変調波数をもつ構 造が結晶内に準安定な状態で取り残されている状 況を考えるのが妥当であろう。すなわち、不整合 相をもつ他の誘電体 36) で知られている「メモリー

Fig. 9 Pressure dependence of (a) the modulation wavenumber ζ and (b) the width of the 40ζ satellite peak. The satellite profile was fit to an asymmetric shape function. In the incom – mensurate region, L – HWHM denotes the half width at half maximum at the low ζ side, and H – HWHM at high ζ side. The profile is symmetric in the 3/7 commensurate phase.

効果」が,弱く現れているものと考えられる。実際,減圧過程ではテイルを引く方向が逆転するの が確認され,結晶のヒストリーに依存するカイネ ティックな現象であることが裏付けられた。

高運動量分解能であることによって非常に接近 したピークが分離できる例は、図8の119.8MPa のプロファイルにみられる。ここでは二つの衛星 反射がζ。=8/19の整合な値をはさんで位置して いる。この事実から、21.0℃では変調波数は不整 合値のまま8/19を境に不連続に変化するのであ って,整合値へのロックインは無いことが分か る。

さて,先に述べた相転移過程のストーリーはこ の場合にも当てはまるのだろうか。予備的な実験 で,不整合相内において高次の衛星反射があるこ とは確認したが、転移点に向かって温度、あるい は圧力を変化させても強度の有意な増大は観測さ れなかった。また、Rb₂ZnCLで測定されたDCの ランダムピン止めによる衛星反射のブロードニン グも見いだされていない。今のところ、 {N (CH₃)₄₂MnCl₄の変調は正弦波的な傾向から大きく 外れていないように見受けられ、DCの存在には否 定的である。しかしながら、最終的な判断を下す には、高次衛星反射強度の系統的な測定の結果を 待つ必要がある。

4. まとめ

高圧単結晶X線回折実験で到達可能な圧力は, DACの発展と高密度気体の理解の進展によって大 きく引き上げられた。また,クライオスタットに 装着しての低温実験,外部ヒーター加熱による高 温実験もなされ,1000Kの温度領域をカバーでき るようになった。さらに,YAGあるいはCO₂レー ザー加熱によって,3000Kでの実験も可能であろ う。一方,低い圧力域でも,圧力精度を上げての 単結晶実験で興味深い現象が見いだされつつあ る。そして,強力なX線源の普及がこれらの進歩 を加速したことは,これまでの研究例を見ると明 かだろう。

従来、低温高圧(<4GPa)条件下におかれた単 結晶の構造物性については、中性子回折実験がそ の知識の多くを提供していた。さらに、中性子の 非弾性散乱実験や磁気散乱実験から得られる情報 は、物性を理解するうえで欠くべからざるもので ある。しかし今やこの二つの実験手法は中性子だ けのものではなくなった。近年の放射光X線を使 った非弾性散乱、磁気散乱の実験結果は、それら が物性科学へ適用可能なことを証明している。 高圧下におかれた物質への応用を考えるとき、最 大の障壁は微小結晶であることによる強度不足で あろう。だが、光学系の改良や挿入型光源の利 用、SPring – 8、MRなどのさらに高輝度光源を 使うことでこの困難は克服されるに違いない。 様々な技術的バリヤーが取り払われつつある現 在,「圧力」が手軽なパラメータとして扱われる 日は目前に来ているように思われる。

謝辞

この原稿は,藤井保彦,八木健彦,竹村謙一, 亀卦川卓美,下村理の各氏との共同研究や日常の 討論を基盤にしたところが多い。また,上記諸氏 のほか田中清明氏から文献をご教示いただいた。 フォトンファクトリーにおける実験では,岸本俊 二氏,松下正氏,岩崎博氏,結晶分光型4軸回折 計グループ,そして阪大基礎工旧山田研・筑波大 物質工藤井研の学生諸君のご協力を仰いだ。ここ に深く感謝の意を表したい。

文献

- *ここで引用した研究例の分野はひどく偏っている。 他分野での高圧単結晶回折実験をご教示願えれば幸 いである。
- H. K. Mao, R. J. Hemley and M. Hanfland, Phys. Rev. Lett. 65, 484(1990); J. H. Eggert, F. Moshary, W. J. Evans, H. E. Lorenzana, K. A. Goettel, I. F. Silvera and W. C. Moss, Phys. Rev. Lett. 66, 193(1991).
- Y. K. Vohra, S. J. Duclos, K. E. Brister and A. L. Ruoff, Phys. Rev. Lett. 61, 574(1988).
- B. Morosin and J. E. Schirber, J Appl. Cryst. 7, 295(1974).
- A. H. Moudden, L. Gatebois, F. Denoyer and M. Lambert, Rev. Sci. Instrum. 51, 836(1980).
- 5) N. Hamaya, Y. Kuroiwa and Y. Fujii, Nucl. Instr. and Meth. B **29**, 537(1987).
- C. E. Weir, S. Block and G. J. Piermarini, J. Res. Nat. Bur. Stand. 69C, 275(1965).
- D. Schiferl, J. C. Jamieson and J. E. Lenko, Rev. Sci. Instrum. 49, 359(1978); J. Koepke, W.

Dieterich, J. Glinnemann and H. Schulz, Rev. Sci. Instrum. **56**, 2119(1985); Y. Fujii, Y. Ohishi, M. Kowaka, N. Hamaya, K. Takemura, S. Hoshino, K. Tsuji, and S. Minomura, Physica **139&140B**, 907(1986); M. Malinowski, J. Appl. Cryst. **20**, 379(1987).

- C. E. Weir, G. J. Piermarini and S. Block, Rev. Sci. Instrum. 40, 1133(1969); R. Keller and W. B. Holzapfel, Rev. Sci. Instrum. 48, 517(1977); H. Ahsbahs, Rev. Sci. Instrum. 55, 99(1984); K. Aoki, Y. Kakudate, M. Yoshida, S. Usuba, K. Tanaka and S. Fujiwara, Jpn. J. Appl. Phys. 26, 2107(1987).
- L. Merrill and W. A. Bassett, Rev. Sci. Instrum.
 45, 290(1974).
- 10) 工藤康弘,竹内慶夫,第24回高圧討論会予稿集
 p.132(1983).
- H. K. Mao and P. M. Bell, Carnegie Inst. Washington Yearbook 79, 409(1980).
- D. Schiferl, S. W. Johnson and A. S. Zinn, High Pressure Res. 4, 293(1990).
- 13) A. Jayaraman, Rev. Mod. Phys. 55, 65(1983).
- R. M. Hazen and L. W. Finger, J. Phys. Chem. Solids, 42, 143(1981); L. W. Finger, R. M. Hazen and A. M. Hofmeister, Phys. Chem. Minerals 13, 215(1986).
- N. Nakagiri, M. H. Manghnani, L. C. Ming and S. Kimura, Phys. Chem. Minerals 13, 238(1986).
- 16) T. Fujii, K. Tanaka, F. Marumo and Y. Noda, Miner. J. 13, 448(1987).
- S. Endoh, T. Chino, S. Tsuboi and K. Koto, Nature 340, 452(1989).
- H. Sowa, K. Reithmayer, J. Macavei, W. Rieck,
 H. Schulz and V. Kupćik, J. Appl. Cryst. 23, 397(1990).
- Y. Kudoh, H. Takeda and H. Arashi, Phys. Chem. Minerals 13, 233(1986).
- 20) G. J. Piermarini and A. B. Braun, J. Chem. Phys.

- L. W. Finger, R. M. Hazen and T. Yagi, Am. Mineral. 64, 1002(1979).
- Y. Fujii, Y. Ohishi, H. Konishi, N. Nakayama and T. Shinjo, Proc. 1991 MRS Spring Meeting, in press.
- 23) H. K. Mao, A. P. Jephcoat, R. J. Hemley, L. W. Finger, C. S. Zha, R. M. Hazen and D. E. Cox, Science 239, 1131(1988).
- 24) H. K. Mao, R. J. Hemley, Y. Wu, A. P. Jephcoat,
 L. W. Finger, C. S. Zha and W. A. Bassett, Phys.
 Rev. Lett. 60, 2649(1988).
- 25) R. M. Hazen, H. K. Mao, L. W. Finger and R. J. Hemley, Phys. Rev. **B36**, 3944(1987).
- 26) D. B. McWhan, R. M. Fleming, D. E. Moncton and F. J. DiSalvo, Phys. Rev. Lett. 45, 269(1980).
- 27) D. B. McWhan, J. D. Axe and R. Youngblood, Phys. Rev. **B24**, 5391(1981).
- A. Okazaki, H. Iwasaki, S. Hashimoto and S. Sasaki, Photon Factory Activ. Rep. 7, 186(1989).
- 29) H. Z. Cummins, Phys. Rep. 185, 211(1990).

- N. Hamaya, S. Shimomura and Y. Fujii, J. Phys.: Condens. Matter 3, 3387(1991).
- Z. Y. Chen and M. B. Walker, Phys. Rev. B43, 5634(1991).
- 32) M. Schroeder, *Fractals, Chaos, Power Laws* (Freeman, New York, 1991) p.334.
- 33) W. L. McMillan, Phys. Rev. B14, 1496(1976);
 M. H. Jensen and P. Bak, Phys. Rev. B29, 6280(1984).
- 34) H. Mashiyama, S. Tanisaki and K. Hamano, J. Phys. Soc. Jpn. 50, 2139(1981); R. Blinc, P. Prelovsek, A. Levstik and C. Filipic, Phys. Rev. B29, 1508(1984); H. G. Unruh, J. Phys. C 16, 3245(1983).
- H. Iwasaki, S. Sasaki, S. Kishimoto, J. Harada, M. Sakata, Y. Fujii, N. Hamaya, S. Hashimoto, K. Ohshima and H. Oyanagi, Rev. Sci. Instrum. 60, 2406(1989).
- 36) C. Manolikas, J. Schneck, J. C. Toledano, J. M. Kiat and G. Calvarin, Phys. Rev. B35, 8884(1987).

高圧粉末X線回折

放射光X線,イメージングプレート,DACとを組合せ ての進歩が著しい。微量試料でも良質の回折プロファイ ルを得ることができるようになり,90GPaの超高圧力下 にある比較的複雑な構造の解析が可能になった(Fujii et al., Phys. Rev. Lett. 63,536(1989))。さらに,電子密 度分布の解析を目指してリートベルト解析やマキシマム エントロピー法が導入されつつある。

整合, 不整合

一つの構造の周期が基本構造の周期の整数倍になる場 合を整合,無理数倍になる場合を不整合であるという。 電荷密度波の波長と格子周期,磁気スピンの配列と核配 列の周期,誘電体では低温で現れる構造の周期に対する 高温(原型)相の格子周期,などの関係がそれにあた る。不整合状態から整合状態に相転移するとき,系の非 線形性を強く反映して空間変調の位相が局在化され,位 相ソリトン(ディスコメンシュレーション,DC)が生 じる。整合に近い不整合な構造は,適当な条件下では, 整合構造の分域を作りつつDCを規則的に配置した状態 となる可能性がある。