解説

分子超励起状態からの正・負イオン対生成

見附 孝一郎

分子科学研究所極端紫外光科学研究系

Ion-pair Formation from Superexcited Molecules

Koichiro MITSUKE

Department of Vacuum UV Photoscience, Institute for Molecular Science

Photoexcitation of molecules to highly excited states at energies above ~10 eV is often accompanied by predissociation into a pair of positive and negative ions. Detecting the negative ions thus formed provides a sensitive probe to investigate the properties of superexcited states of Rydberg or valence type lying in the vacuum ultraviolet. Basic spectroscopic data and cross sections for the ion-pair formation are obtained from negative-ion efficiency curves. Moreover, a great interest has been taken in the dynamics of the ion-pair formation as half-collisional version of the electron transfer reaction. A novel coincidence technique utilizing the flight-time correlation of an ion pair is also reviewed.

1. 超励起状態の特徴

分子の第1イオン化ポテンシャル以上の内部エ ネルギーを持つ中性の状態を超励起状態と呼び、 その励起軌道の性格に応じて3通りに分けること ができる。リュドベリ状態は励起電子が高い主量 子数を持つリュドベリ軌道に収容されているもの である。一方、電子が反結合性軌道に収容されて いるものが励起価電子状態であり、そのうちで分 子の電荷に偏りが生じてイオン結合性の電子状態 の性質を持つものを特にイオン対状態という。こ れらの超励起状態は状態密度が高く反応性に富む ことから、電子励起分子の単分子分解や反応性衝 突に深く関わっている。すなわち、図1に示すよ うに、光イオン化や光解離における中間状態とし て重要であるばかりでなく、解離性再結合、ペニ ングイオン化,イオン対再結合等の諸反応の遷移 状態領域に対応している。これらの動的過程を理 解するためには,リュドベリ状態,励起価電子状 態,イオン対状態およびそれらと相互作用するイ オン化状態について,ポテンシャルエネルギー曲 面と2状態間の電子的結合を実験と理論の両局面 から詳しく検討する必要がある¹⁻⁵⁾。

超励起状態の性質が最も詳しく調べられている のは,価電子の光励起とその後続過程を対象とし た研究である。これまで,光吸収法,光イオン化 質量分析法(イオン化効率曲線),波長可変光電 子分光法(部分イオン化断面積曲線),蛍光励起 法,各種同時計測法などの,多種多様な実験手法 が発案され実用化されてきた。このことは,可視・ 紫外領域の低い電子励起状態に比べると,超励起

Fig.1 Elementary reactions involving superexcited states ABC^{**} and an ionization state ABC⁺ + e⁻. Interaction between any two states can be represented universally by the electronic coupling V(R).
----:photoionization, autoionization; ----:photodissociation, predissociation;
----: dissociation into a pair of positive and negative ions (ion - pair formation); <---: dissociative recombination <----:Penning ionization, collisional electron transfer; <---: ion-ion mutual neutralization.

状態の消滅過程(エネルギー放出過程)が極めて 多岐に渡っていることの証となっている。まず, イオン化の連続状態の中に離散的に存在するの で,短時間の内に電子を放出して自動イオン化す る。また,結合性の価電子が励起される影響で分 子の結合が弱まり,中性種やイオン対へ解離して いく道筋(チャネル)が開けている。後者場合に は,励起エネルギーが原子核の運動エネルギーに 変換される。大きな分子になると,内部転換で別 の超励起状態に移行し,そののち自動イオン化や 前期解離する例も見られる。以上をまとめると, 多原子分子ABC(A, B, Cは原子または原子群 を表す)の光励起に引き続いて起こる種々の緩和 過程は次のようなスキームで表される。

$$ABC + h\nu \rightarrow ABC^{**} \rightarrow ABC^{+} + e^{-}$$
(1a)

 $\rightarrow AB^* + C \qquad (1b)$ $\rightarrow AB^+ + C^- \qquad (1c)$

$$\rightarrow ABC'^{**} \rightarrow ABC^{+} + e^{-}$$
 etc. (1d)

2. リュドベリ状態

同じ対称性を持ち,1つのイオン化限界に収斂 する一連のリュドベリ状態の集合をリュドベリ系 列とよぶ。どんな分子でも200nmより短波長の真 空紫外領域でほとんど例外なくリュドベリ系列が 観測される²⁻⁶⁾。中性基底状態を基準として,リュ ドベリ状態の励起エネルギー E_R と,そのイオン核 を生成するのに必要なエネルギー I_P (イオン化ポテ ンシャル)の間には次の関係がある。

$$T_{t} = I_{P} - E_{R} = R / (n_{P} - \delta)^{2}$$
(2)

ここでRはリュドベリ定数, n_P は主量子数である。 δ を量子欠損といい, リュドベリ電子からみたイ オン核の正電荷の遮蔽度を反映している。この値 は遮蔽の弱いs軌道で最も大きく, p, d軌道とな るに従い小さくなる。また,特定のリュドベリ系 列の中では δ の値はほぼ等しくなる。 T_f は項値 (term value)呼ばれ, リュドベリ状態のイオン化 ポテンシャルに等しい。同じリュドベリ軌道に励 起されるなら, T_f はもともと電子がどの価電子軌 道に収容されていたのかにあまり依存しないこと が知られている。

一般に、イオンの励起状態に収斂するリュドベ リ状態は電子的自動イオン化を起こす。このと き、離散的状態 ϕ からイオン化連続状態 ϕ_E への遷 移行列要素 $V(R) = \langle \phi_E | H | \phi \rangle$ が電子的結合に 相当する¹⁾。電子系のハミルトニアンHの中では、 脱励起される電子とイオン化される電子のクーロ ン反発項1/ r_{12} が重要である。自動イオン化共鳴 吸収のスペクトル幅 Γ とV(R)の間には

$$\Gamma = 2\pi |V(R)|^2 = 2\pi |\langle \phi_E | H | \phi \rangle|^2 \tag{3}$$

の関係がある。また、V(R)の核間距離 R 依存性 は振動波動関数のそれに比べて小さく、したがっ てイオンの振動分布はフランクコンドン因子で決 定される。なお、特定のリュドベリ系列の中で は、光イオン化共鳴曲線の形状を決めているパラ メータ qの値は n_P に依らず一定である。この場 合、リュドベリ軌道の電子分布の広がりを考慮す れば、 Γ が $(n_P - \delta)^{-3}$ にほぼ比例することも証明 できる。

また、例えば $n_P - \delta = 10 \circ T_I = 136 \text{meV}$ と小 さいことからも想像できるように、高い n_P を持つ リュドベリ状態はイオン核の振動脱励起でも自動 イオン化を起こす可能性がある。2原子分子の場 合、こういった振動自動イオン化の確率は振動量 子数の変化 Δv が1のときに最も高くなり、 Δv が 大きくなるに連れて指数関数的に減少することが 理論的に示されている。

3. 正イオンと負イオンへの解離(イオン 対生成)

イオン対生成(1c)は前期解離現象の一つに分 類されるべきものであるが,超励起状態のダイナ ミックスを調べるという観点からは絶好の緩和チ ャンネルといえる。なぜなら,中性種への解離過 程に比べて,生成物をそのまま質量分析して検出 できる点で優位だからである。ただし,正イオン を捕らえても通常のイオン化過程(1a)と区別す ることが難しいので,負イオンの信号を測定しな ければならない。1960年代の真空紫外分光実験の 創生期から,2原子分子からの負イオン検出の報 告は数例あった⁷⁻¹⁰。

それに対して,多原子分子に関しては,我々の 系統的な研究によって,ここ数年で新たな展開が もたらされた¹¹⁻²⁰。これまで蓄積されてきた結果 を箇条書きに整理すると次のようにまとめられる。 (1)表1に示すように,正の電子親和力を持つ原子 を含む多原子分子がほぼ例外なくイオン対生成反 応を起こす。

(2)イオン対解離で生成した負イオンの効率曲線を 測定することで,他の手法では観測が困難な中性 超励起状態を識別できる。

(3)イオン対解離を起こす超励起状態は電荷移動反 応やイオン対再結合反応の遷移状態領域に対応す る。したがって,負イオン解離効率曲線からこれ らの反応のダイナミックスについて重要な知見が 得られる(ポテンシャルエネルギー曲面の擬似交 差など)。

(2)の点について捕捉すると,我々の研究から高 エネルギー領域に存在する超励起状態(多電子励 起状態や励起イオンに収斂するリュドベリ状態な ど)からのイオン対生成が強調されて観測される ということがわかってきた。実際に,これまで吸 収曲線やイオン化効率曲線からは判別が難しかっ た多数の状態が負イオンの効率曲線上に見いださ

-23-

molecule	ion pair	peak energy* (eV)	photodissociation cross section(Mb)	photoabsorption cross section(Mb)	
O 2	0 ⁻ 0⁺	17.31	0.2	25	
N₂O	$O^- N_2^*$	18.56	$(2.5-5) \times 10^{-2}$	47	
OCS	S⁻CO⁺	18.4	2×10^{-3}	46	
	O⁻ CS⁺	18.4	2×10^{-3}	46	
CO 2	O⁻CO⁺	23.0	4×10^{-3}	34	
SF ₆	F [−] SF5	14.3	7×10^{-4}	36	
CF4	F [−] CF ⁺	13.9	1×10^{-4}	46	
SO 2	O [−] SO⁺	16.2	2.6×10^{-2}	41	
H ₂	— <u>H</u> ⁻ H ⁺	17.36	4 × 10 ⁻²	10	
CH₄	H⁻CH;	21.5	1×10^{-2}	30	
C ₂ H ₆	H⁻C₂H₅⁺	18.9	2 × 10 ⁻³	68	
C ₃ H ₈	H⁻C₃H,⁺	18.7	2×10^{-3}	100	
$n - C_4 H_{10}$	$H^{-} n - C_{4}H_{2}^{\dagger}$	18.1	2×10^{-3}	130	
<i>iso</i> −C₄H 10	H ⁻ iso−C₄H;	20.4	2×10^{-3}		
neo-C ₅ H ₁₂	H^- neo-C ₅ H_{11}^+	20.0	7×10^{-3}	130	

Table 1 Ion pairs produced by VUV photoexcitation of various molecules.

^a the maximum intensity position in the negative-ion efficiency curve.

れている。こういった超励起状態は,複数の自動 イオン化チャネルの寄与や直接イオン化の影響の ために,その自動イオン化共鳴のピークは吸収ま たは光イオン化のスペクトル中に埋もれてしまう。 それに対して,イオン対状態への前期解離の場 合,電子的結合はポテンシャル曲面の形状に強く 依存した局所的な相互作用であり,他の前期解離 チャネルや直接解離の影響はほとんど無視できる。 したがって,解離効率曲線には共鳴構造が明確に 現れることになる。

4. 装置と実験方法

分子科学研究所の軌道放射光実験施設 UVSOR のビームライン BL3B に設置されている気体化学 反応素過程実験装置を用いた^{11,15}。本研究用に製 作した分子線光イオン化装置の概念図を図2に示 す。口径 50µmのノズル⑦から澱み圧約 200Torr で試料気体を噴出し、口径 0.6mmのスキマー⑧で 切り出して分子線とした。偏向磁石からの軌道放 射を 3m直入射分光器①で分光し、イオン化室⑨に おいて分子線と垂直に交差させた。波長分解能は 約0.8 Åとした。生成した負イオンをイオンレン ズ系⑩で集束し四極子型マスフィルター⑫で質量 分析した。偏向電場電極⑪で通過軌道を曲げて, ビーム軸から10mmずらして置いた二次電子増倍 管⑬にイオンを導きパルスカウンティング法で検 出した。光の波長を掃引し,各イオンの解離効率 曲線を測定した。その際に,イオン化室通過後の 光をサリチル酸ナトリウムに照射してその蛍光量 から真空紫外光強度をモニターした。また,イオ ン化室の上流に装着された電子銃で試料気体を低 速電子衝撃し,生成した負イオンを利用してイオ ンレンズの焦点合わせを行った。ノズル分子線噴 出室は1000ℓ/sのターボ分子ポンプ2台によって 排気し,測定中は約1×10⁻⁵Torrに保持した。

5. 2原子分子

5.1 酸素分子

O₂から生成するO⁻の解離効率曲線は17-19eV

(a) Top view

Fig.2 Schematic diagram of the apparatus for measuring the photodissociation efficiency curve of negative ions produced by ion - pair formation.
(a) Top view of the molecular beam production system, ionization region, ion optics, and mass spectrometer, and (b)side view of the apparatus including monochromator and mirror system. 1 normal incidence monochromator with 3-m focal length; 2 mirrors; 3 entrance and exit slits; 4 beam expansion chamber; 5 ionization chamber; 6 detection chamber; 7 sonic nozzle; 8 conical skimmer; 9 ionization cell; 10 ion lenses; 11 deflectors; 12 quadrupole mass filter; 13 channel electron multiplier; 14 photon detector; 15 mirror chamber.

(領域 I) と 20-25eV (領域 II, 図3・破線)の特 徴的な 2つのピーク群から成る。領域 I は $O_2^+(\tilde{b}^+ \Sigma_g^-)$ に収斂するリュドベリ状態からイオン対状態 $O_2^* (^{3}\Sigma_u, ^{3}II_u)$ に移行して $O^-(^{2}P_u) + O^+(^{4}S_u)$ に 前期解離したものと解釈され、ピーク位置と強度 分布は Dehmer らの結果とよく一致した⁶⁾。領域 II の 20.59eV と 22.4eV の立ち上がりは $O_2(\tilde{X}^- ^{3}\Sigma_g^-)$ からイオン対状態 $O_2^*(^{3}\Sigma_u^-, ^{3}II_u)$ に励起され、 ぞれぞれ $O^-(^{2}P_u) + O^+(^{2}D_u) \ge O^-(^{2}P_u) + O^+(^{2}P_u)$ に直接解離したものに対応する。20.85, 23.21,

Fig.3 Photodissociation efficiency curves for the ion – pair formation from O₂ in the energy region of 20 – 25eV. Produced negative ions are extracted perpendicularly (-----) or parallel (-----) to the electric vector of the linearly polarized light. The measurement in the perpendicular direction is performed by using positive ion – negative ion coincidence technique as described in Section 9.2 (see Fig.20). Vertical lines indicate the thermochemical threshold for the formation of O⁻(²P_u) + O⁺(²D_u) and O⁻(²P_u) + O⁺(²P_u) and the Rydberg series O₂^{**} (ns $\sigma_g^{-3} \Sigma_u^{-}$ and $nd \sigma_g^{-3} \Sigma_u^{-}$) converging to O₂^{*}($\tilde{c}^{-4} \Sigma_u^{-}$).

23.83eVなどのピークは $O_2(c^4 \Sigma_u)$ に収斂するリュドベリ状態からの前期解離に起因する¹⁰。図3に 各ピークの帰属が記載してある。

5.2 一酸化炭素と一酸化窒素

CO, NOの光電子スペクトルは 20eV 以上に多数の帰属できないサテライト線を持ち, 関与する イオン化状態の電子配置や励起エネルギーについ てまだ未確定な要素が多い。この領域では深い価 電子のイオン化に伴って, 浅い価電子の非結合性 軌道への励起が起こり, その結果, 種々の多電子 励起状態が生ずると考えられる。COの場合, 高分 解能の He II 光電子スペクトルの解析から複数個の 2電子励起イオン化状態が発見されている²¹⁾。さら に、吸収スペクトル²²⁾に現れるピークがこれらの イオン化状態に収斂するリュドベリ状態に帰属さ れている。一方、NOの多電子励起状態に関して はこれまでほとんど報告例がない。我々はCOと NOから生成するO⁻の効率曲線中に多数の二電子 励起リュドベリ状態を同定した。

COから生成するO⁻の効率曲線を図4に示す。 22.5eV以下の鋭いピークは次の3種類の2電子励 起イオン化状態に収斂するリュドベリ状態CO^{**} への遷移に対応している: $(\pi 2p)^{-1}(\sigma 2p)^{-1}(\pi^* 2p)^{1} \tilde{C}^2 \Sigma^{+}, (\pi 2p)^{-2}(\pi^* 2p)^{1} \tilde{D}^2 \Pi, (\pi 2p)^{-1}(\sigma 2p)^{-1}(\pi^* 2p)^{1} \tilde{E}^2 \Sigma^{+}$ 。とくに強度の強いピー クはCO⁺($\tilde{D}^2 \Pi$) に収斂するCO^{**} [$(\pi 2p)^{-2}(\pi^* 2p)^{1}(np\pi)$] とCO⁺($\tilde{C}^2 \Sigma^{+}$) に収斂するCO^{**} [$(\pi 2p)^{-1}(\sigma 2p)^{-1}(\pi^* 2p)^{1}(ns\sigma)$] と同定され た。ここでCOの分子軌道が等電子分子のN₂のそ れとよく似た空間分布を持つと仮定し,反転対称 に関する双極子遷移の選択則を適用してピークの 帰属を行った。

NOから生成する O⁻の解離効率曲線を図**5**に示 す。スペクトル上のいくつかのピークは,イオン 化エネルギー 21.72eV に存在する NO⁺(*c*³ Π) に収 敏する nd π または nd σ リュドベリ状態への遷移に 由来するものと考えられる。ピークの帰属は Narayana と Price の吸収スペクトル²³⁾ と Oertel らに よる O⁻の解離効率曲線¹⁰⁾ のデータに基づいて行っ た。22.7から 23.8eV および 24.5から 26eV 付近に 等間隔に並んだ弱いピーク群が見られるが、これ らはおそらく未知の 2 電子励起イオン化状態に収 斂するリュドベリ状態への遷移によるものと推定 される。

6. 3原子分子

6.1 亜酸化窒素

N₂Oのリュドベリ状態は,前期解離や自動イオ ン化のメカニズムが詳しく調べられている数少な い多原子分子の一つである。我々はリュドベリ状 態とイオン対状態との電子的結合が軌道対称性や 収斂するイオン化状態の違いによってどう影響を 受けるかを考察した¹¹¹。

N₂Oから生成するO⁻負イオンの効率曲線を図**6** と図**7**に示す。イオンの出現電位はO⁻(${}^{2}P_{u}$) + N₂⁺ ($\tilde{X}^{2}\Sigma_{g}^{+}$)の解離限界の熱化学的しきい値にほぼ一 致した。O⁻のスペクトルにはN₂O⁺($\tilde{A}^{2}\Sigma^{+}$)および N₂O($\tilde{C}^{2}\Sigma^{+}$)に収斂するリュドベリ系列(それぞ

Fig.4 Photodissociation efficiency curve of O⁻ produced from CO. Regions containing the vibrational progressions for two – electron – excited ionic states are indicated.

Fig.5 Photodissociation efficiency curve of O⁻ produced from NO. The adiabatic ionization potentials for NO⁺ (\tilde{C} , \tilde{B} ') are indicated.

れ*R_A*, *R_c*状態)が観測された。これらのピークは N₂Oがリュドベリ状態に光励起されたのち、イオ ン対状態に前期解離することによって生じたもの と説明される。R₄状態の安定化過程としてはこれ まで、 $N_2O^+(X^2 \Pi)$ への自動イオン化あるいは中 性の解離性ポテンシャルへの前期解離等が知られ ており²⁴⁾, 今回の実験からこれらはイオン対生成 過程も含めて互いに競争関係にあることがわかっ た。以下に述べる事実から、それぞれのチャネル への分岐比がリュドベリ電子の軌道対称性に著し く依存すると予想される。まず、光学許容遷移で ある5つのリュドベリ状態のうちnd π 系列のみが 図6のスペクトルに現れることから、「Ⅱ対称のイ オン対状態のポテンシャルが $N_2O^+(A^2\Sigma^+)$ の平衡 核配置において反発性であり、R₄状態のポテンシ ャルの極小点近傍で交差していると結論される。 一方, nd σ 系列の場合 N₂O⁺の生成効率曲線に強 く現れることから、 $N_{2}O^{+}(\tilde{X}^{2}\Pi)$ への自動イオン 化が優先的に起こると考えられる。

図7に示すように、 R_c 状態としては非常に顕著 な $nd\pi$, $nd\sigma$ 系列と弱い $np\pi$, $np\sigma$ 系列が観測 された。光吸収断面積曲線²⁵⁾, N_2O^+ の生成効率

Fig.6 Photodissociation efficiency curve of O⁻ produced from N₂O near the adiabatic ionization potential for N₂O⁺ ($\tilde{A}^{-2}\Sigma^{+}$). The spectrum is taken at a wavelength resolution (FWHM) of 0.8 Å and wavelength intervals of 0.5 Å.

曲線^{2,28)} および N₂O⁺ ($\tilde{A} \rightarrow \tilde{X}$) 蛍光励起スペクト ル²⁷⁾ の何れにおいても $np\pi$ 系列は特徴的な極小構 造を与えることが知られている。Fanoの理論²⁸⁾ に 従えば, $np\pi$ 状態は N₂O⁺ ($\tilde{X}^2 \Pi$, $\tilde{A}^2 \Sigma^+$)の連続 状態と緊密に相互作用し,かつ, N₂O ($\tilde{X}^1 \Sigma^+$) 基 底状態からこれら連続状態への双極子遷移行列要 素が大きいことがわかる。それに対して、O⁻の効 率曲線上の $np\pi$ 系列は弱い極大として検出される ことから, $np\pi$ 状態とイオン対ポテンシャルの解 離連続状態との結合は弱く,また, N₂O ($\tilde{X}^1 \Sigma^+$) からこの連続状態への双極子遷移行列要素は極め て小さいと推定される。

6.2 硫化カルボニルと二酸化炭素

内殻領域での反結合性軌道への励起はかなり大 きな光吸収断面積を持ち,内殻正孔状態のエネル ギー準位やエネルギー幅ならびに共鳴オージェや イオン生成解離などの崩壊過程について多くの研 究が行われている²⁰。それに対して,価電子領域 では励起価電子状態の性質に関して不明確な点が 多い。おそらく,フランクコンドン領域で反発性 のポテンシャル曲面に遷移するために吸収スペク

Fig.7 Photodissociation efficiency curve of O⁻ produced from N₂O near the adiabatic ionization potential for N₂O⁺ (\tilde{C} ² Σ ⁺). The spectrum is taken at a wavelength resolution (FWHM) of 0.8Å and wavelength intervals of 0.5Å.

トルの幅が広くかつイオン化連続状態との電子的 結合がさほど強くならないためと思われる。我々 は OCS のイオン対状態への光解離過程

 $OCS + h\nu \rightarrow S^- + CO^+, OCS + h\nu \rightarrow O^- + CS^+$

によって生成する負イオンの効率曲線を測定し, 励起価電子状態からの前期解離が本質的な役割を 果していることを見出した¹²⁰。CO₂についても同 様の現象を観測した。これらの結果から励起価電 子状態の分光学的性質(励起エネルギー,遷移の 振動子強度など)ならびにその緩和のダイナミッ クスに関して議論した。

OCSの光解離によって生成するS⁻およびO⁻負 イオンの効率曲線を図8に示す。イオンの出現電 位はS⁻ (²P_u) + CO⁺ ($\tilde{X}^2\Sigma^+$) またはO⁻ (²P_u) + CS^+ ($X^2\Sigma^+$) の生成に対応する熱化学的しきい値 に良く一致した。S⁻のスペクトルには OCS⁺($B^2\Sigma^+$) に収斂するリュドベリ系列が観測され(F1),イ オン対状態への前期解離のチャネルが開けている ことが確認された。また、S⁻, O⁻のどちらのス ペクトルにも 675 Å (18.4eV) 付近に強いピーク が見られた (F2, F3)。O⁻の場合, さらに高エネ ルギー領域に幅広い構造が存在した(F4)。OCS 分子と各イオン対状態との間の分子軌道相関(図 9) を詳細に検討した結果, これらのピークは OCS が一電子励起状態 $[9\sigma \rightarrow 10\sigma]$ または二電子励起 状態 $[9\sigma \rightarrow 10\sigma, 3\pi \rightarrow 4\pi]$ に光励起されたの ち、イオン対状態に前期解離することによって生 じたものと解釈される。 CO_2 から $O^-(^2P_u) + CO^+$ $(X^{2}\Sigma^{+})$ への光解離についてもほぼ同様の説明で 理解される(図10)。すなわち、一電子励起状態 $[3\sigma_u \rightarrow 5\sigma_g]$ あるいは CO_2^+ ($C^2\Sigma_g^+$) に収斂する リュドベリ状態に対応するピークが検出された $(F6, F7)_{\circ}$

6.3 二酸化硫黄

SO₂は地球大気,星間物質の構成要素として重

Fig.8 Photodissociation efficiency curves of S⁻ and O⁻ produced from OCS taken at a wavelength resolution (FWHM) of 0.8Å and wavelength intervals of 1Å. Vertical lines indicate the adiabatic ionization potentials for the vibrational ground states of OCS⁺ (\widetilde{B} and \widetilde{C}) and the thermochemical thresholds for the formation of S⁻(${}^{2}P_{u}$) +CO⁺ (\widetilde{X} , \widetilde{A} , and \widetilde{B}), O⁻(${}^{2}P_{u}$) +CS⁺(\widetilde{X} , \widetilde{A} , and \widetilde{B}), S⁻(${}^{2}P_{u}$) + O(${}^{3}P_{g}$), and O⁻(${}^{2}P_{u}$) + C(${}^{3}P_{g}$) + S⁺(${}^{4}S_{u}$).

要でありその電子構造や光吸収過程について強い 関心が持たれている。その超励起状態については 光吸収³⁰⁾,光イオン化³¹⁾,電子エネルギー損失³²⁾ 等で研究されているが、スペクトルが込み入って おり不明確な点が多い。我々は SO2の光解離で生 成する0 の効率曲線からイオン対状態へ前期解離 を起こすリュドベリ状態について考察した¹⁷⁾。効 率曲線 (図11) は $O^{-}(^{2}P_{u}) + SO^{+}(X^{2}\Pi)$ の出現電 位 14.49eV (855.7Å) に始まり~16.1eV (770Å) 極大を持つ領域 I と, $O^{-}(^{2}P_{u}) + SO^{+}(A^{2}\Pi)$ の出 現電位 18.60 ± 0.1eV (666.6 ± 3.6Å) に始まり ~22.5eV (550Å)に極大を持つ領域Ⅱに分けられ る。領域IIには $O^{-}(^{2}P_{u}) + S^{+}(^{4}S_{u}) + O(^{3}P_{g}) \geq O^{-}$ $({}^{2}P_{u}) + S^{+}({}^{2}D_{u}) + O({}^{3}P_{g})$ の生成に対応してそれ ぞれ19.9eV(623Å)と21.8eV(570Å)に急峻な 立ち上がりが観測される。領域 I には SO₂⁺のイオ

Fig.9 Orbital correlation diagrams between (a) OCS and S⁻ (${}^{2}P_{u}$) + CO⁺($X {}^{2}\Sigma^{+}$) and (b) OCS and O⁻ (${}^{2}P_{u}$) + CS⁺ (X ${}^{2}\Sigma^{+}$). The approximate electron binding energies for occupied and vacant orbitals are taken from data of photoelectron spectra and results of ab initio calculations, respectively.

ン化状態 $(4b_2)^{-1}$, $(7a_1)^{-1}$, $(2b_1)^{-1}$ に収斂する リュドベリ状態と思われるピークが多数存在する。 解析の結果、図12に示す4つの振動のプログレッ ションP1~P4を見いだした。P1の振動数は740-970cm⁻¹であり SO₂⁺ (D^2A_1)の対称伸縮振動 ν_1 の それ33) に非調和性を含めてほぼ合致することか ら、 $7a_1 \rightarrow 5sa_1 A_1$ リュドベリ状態に由来すると考 えられる。5sa」 軌道への遷移に対する項値は 1.62eVと求められ, Szeら³²⁾の報告した 1.76eVに ほぼ等しい。同様にして、P2とP3はそれぞれ7a $\rightarrow 6sa_1$, $7a_1 \rightarrow 8sa_1$ 状態の ν_1 プログレッションに 帰属される。Ericksonらは838-812 Åの範囲で SO₂⁺の光イオン化効率曲線上に 7 $a_1 \rightarrow 3d \geq 2b_1 \rightarrow$ 4pのリュドベリ状態を検出した³¹⁾。これらのピー クはO⁻の効率曲線には観測されないことから, $7a_1 \rightarrow nsa_1$ に比べて自動イオン化に対する寿命が短 いと予想される。

7. 飽和炭化水素

7.1 メタン

負イオンの解離効率曲線には,超励起状態のポ テンシャル曲線の位置や形状だけでなく,擬似交 差点における他のポテンシャルへの非断熱遷移に

Fig.10 Photodissociation efficiency curve of O⁻ produced from CO₂ taken at a wavelength resolution (FWHM) of 0.8Å and wavelength intervals of 1Å. Vertical lines indicate the adiabatic ionization potentials for the vibrational ground states of CO₂⁺ (\widetilde{B} and \widetilde{C}) and the thermochemical thresholds for the formation of O⁻ (²P_u) + CO⁺(\widetilde{X} , \widetilde{A} , and \widetilde{B}), O⁻ (²P_u) + C⁺ (²P_u) + O(³P_g), and O⁻ (²P_u) + C(³P_g) + O⁺(⁴S_u).

関する情報も含まれる。我々は、将来的に理論計 算またはイオン対再結合反応の実験結果との比較 が可能になるであろうと予想される系としてメタ ンを取り上げた¹⁴⁾。図13にCH₄から生成するH⁻の 効率曲線を示す。CH₄の第一イオン化ポテンシャ ル付近に、H⁻(${}^{1}S_{g}$) + CH₃⁺($\tilde{X}^{1}A_{1}$)への直接遷移 による幅広いピークが観測される。その立ち上が

Fig.11 Photodissociation efficiency curve of O⁻ produced from SO₂ taken at a wavelength resolution (FWHM) of 0.8Å and wavelength intervals of 1Å. Vertical lines indicate the adiabatic ionization potentials for SO₂⁺($\tilde{C}^2 B_2$, $\tilde{D}^2 A_1$, and $\tilde{E}^2 B_1$) and the thermochemical thresholds for the possible ion – pair channels.

Fig.12 Photodissociation efficiency curve of O⁻ produced from SO₂ taken at a wavelength resolution (FWHM) of 0.8Å and wavelength intervals of 0.5Å. The adiabatic ionization potentials for SO₂⁺(\tilde{C} ²B₂, \tilde{D} ²A₁ and \tilde{E} ²B₁) are indicated.

Fig.13 Photodissociation efficiency curve of H⁻ produced from CH₄. The adiabatic ionization potentials for CH₄⁺($\tilde{X}^{2}T_{2}$ and $\tilde{A}^{2}A_{1}$) and the appearance potential for the formation of CH₃⁺($\tilde{X}^{1}A_{1}'$)+ H(²S_g) + e⁻ are indicated.

りの13.37±0.15eV(927±10Å)は高分解能電 子衝撃法³⁰⁾ によって報告されているしきい値 13.25 ± 0.08eV にほぼ一致する。19.88eV および 21.21eVから始まる振動構造(それぞれ P1, P2) は CH_4^+ [(2a₁)⁻¹ A^2A_1] に収斂するリュドベリ状態 $2a_1 \rightarrow npt_2 T_2$ (それぞれ n = 3, 4) の全対称伸縮 振動 ν₁モードのプログレッションである。P1の 各ピークには微細構造が乗っており低い振動数 モードの励起も同時に起こっていることが予想さ れる。重メタンから生成する D⁻の効率曲線と比較 した結果, 21.7eVより高エネルギー側の領域に $2a_1 \rightarrow 5pt_2$ T₂の振動構造が P2に重なって存在する ことがわかった。また、4pt2状態への遷移の振動 子強度は 3pt2 状態への遷移のそれよりも小さいに もかかわらず P2の強度は P1 に比べて強い。Lee らが報告した CH4 の蛍光励起スペクトルによる と³⁵⁾, 4pt₂状態から解離励起種 [H* (n ≥ 3), CH* (\tilde{A}, \tilde{B}) など]を生成するチャネルが開けているこ とがわかっている。以上の事実から、 4pt2状態は 一旦. 中性の解離性状態へ乗り移り, CH₃-H結合 がかなり伸びたところでイオン対状態へ断熱的に 移行し $H^{-}({}^{l}S_{g}) + CH_{3}^{+}(A^{l}E^{"})$ を生成するものと 結論される。

Fig.14 Photodissociation efficiency curve of H⁻ produced from C_2H_6 . The vertical ionization potentials of C_2H_6 are indicated by long lines with symmetry of the orbital from which an electron is removed. Short lines designate the excitation energies for the Rydberg states converging to $C_2H_6^*$. The final Rydberg orbitals of *s*- or *p*- type are specified above the lines.

7.2 エタン, プロパン, *n*-ブタン, *iso*-ブタ ン, *neo*-ペンタン

各種飽和炭化水素からのイオン対生成の効率曲 線を測定し、関与するリュドベリ軌道を同定する ことによって、それらの解離機構について検討し た¹⁸⁾。各炭化水素からH⁻が検出され、その生成断 面積は約2×10⁻²¹cm²と見積もられた。エタンか ら生成したH⁻の光解離効率曲線を図14に示す。 主なピークは、炭素2s性軌道(C2s軌道)に収容さ れている深い価電子がリュドベリ軌道に励起され た超励起状態に帰属される。これらのピークを詳 細に観察すると、リュドベリ状態(2a_{2u}→4s, 5s) の振動励起(v₁: C-H伸縮, v₃: C-C伸縮)に 対応するプログレッションが存在することがわか る。プロパンから生成したH⁻の光解離効率曲線を 図15に示す。すべてのピークは、4a1または2b2の 電子が励起されたリュドベリ状態に帰属される。 他の炭化水素に対しても同様の傾向が見られるこ

Fig.15 Photodissociation efficiency curve of H⁻ produced from C_3H_8 . The vertical ionization potentials of C_3H_8 are indicated by long lines with symmetry of the orbital from which an electron is removed. Short lines designate the excitation energies for the Rydberg states converging to $C_3H_8^+$. The final Rydberg orbitals of *s*- or *p*- type are specified above the lines.

とから、イオン対生成は C_{2s} 軌道のイオン化状態に 収斂するリュドベリ状態を経由して起こり、炭素 2p性軌道 (C_{2p} 軌道)のイオン化状態に収斂する状 態からは起こらないことが分かった。このことは 後者の状態が他の競争過程、主に自動イオン化や 中性解離、を経由して緩和することを示している。 一方、反結合性の C_{2s} 軌道から電子が励起した状 態においては、対称性の大きく異なる C_{2s} と C_{2p} 軌 道の波動関数同士の重なり積分は小さく、 C_{2p} の 電子が C_{2s} の正孔に落ちて自動イオン化する確率 は低い。

neo-ペンタンの H⁻効率曲線 (図 16) は他の炭化 $水素と大きく異なる特徴を示す。第1に、<math>4a_1$ 軌道 は反結合性の C_{2s} 軌道であるにもかかわらず $4a_1 \rightarrow$ np等のリュドベリ状態に対応するピークが全く存 在しない。それに対して、光吸収曲線³⁵⁾ には $4a_1$ $\rightarrow 3p, 4p, 5p$ 状態に帰属される強い共鳴構造が 生ずることから、これらの状態はイオン化の速度

Fig.16 Photodissociation efficiency curve of H⁻ produced from $neo - C_{6}H_{12}$. The vertical ionization potentials of $neo - C_{6}H_{12}$ are indicated by long lines with symmetry of the orbital from which an electron is removed. Short lines designate the excitation energies for the Rydberg states converging to $neo - C_{6}H_{12}^{*}$. The final Rydberg orbitals os s - or p - type are specified above the lines. The strong peak at 19.97 eV is considered to arise from $2t_{2} \rightarrow \sigma^{*}$ transitions.

が大きく,そのため前期解離への分岐比が小さく なると考えるのが妥当である。しかし,なぜイオ ン化連続状態との相互作用が強くなるのか,その 理由については不明である。第2に,19.97eVに 極大を持つ強いピークは励起エネルギーから判断 してリュドベリ状態には対応しない。H⁻の生成断 面積が他の炭化水素に比べて3-4倍大きいこと, および 20eV付近のエネルギー領域に 3 つの $2t_2 \rightarrow \sigma^*$ 遷移が存在するという拡張 Hückel 計算の結 果³⁷⁾等から考えて,何らかの励起価電子状態を経 由してイオン対状態へ移行している可能性が高い と結論した。

8. フッ化物

8.1 六フッ化硫黄

SF₆の真空紫外あるいは軟 X 線領域での光吸収

Fig.17 Schematic representation of the effective potential acting on an excited electron of SF_{ε} . Broken lines indicate vacant virtual orbitals, and full lines occupied valence orbitals.

過程については1965年以来,実験・理論の両面か ら多くの研究が行われてきた。Dehmerら³⁰⁾は電気 陰性度の大きな F 原子の回りの電子密度が高いた めに、光励起される電子はF原子の作る正八面体 の周辺でかなり高いポテンシャル障壁を感じると 主張している。彼らのモデルに従えば、ポテンシ ャル障壁の内側に大きな確率振幅を持つ innerwell 軌道と、障壁の外側に広がったリュドベリ的 な outer-well軌道との 2通りが考えられる (図 17)。 SF₆の場合, 価電子的な inner-well 軌道への遷移の 振動子強度が普通の分子に比べて強く、さらに電 子が抜け得る占有軌道が多数あるために、光吸収 スペクトルのピークがどういった励起状態に帰属 されるかまだ確定していない。我々は、SF6から 生成する F⁻負イオンの効率曲線と光吸収曲線を比 較・検討し、観測される中性励起状態の帰属を行 った13)。

図 **18**に(a)我々が得た F⁻の解離効率曲線と (b),(c)報告されている光吸収曲線^{35,39-41)}を示 す。解離効率曲線には S原子の 3p あるいは 3s 原子 軌道成分を持つ価電子軌道 4*t*_{1u}, 5*a*_{1g} から outer-

Fig.18 Comparison among (a) photodissociation efficiency curve of F^- produced from SF₆ (Ref. 13), (b) photoabsorption cross section curves (Refs. 35, 39, 40), and (c) high resolution electron energy loss spectrum (Ref. 41). The F^- curve is taken at a wavelength resolution (FWHM) of 0.8Å and wavelength intervals of 1Å.

well軌道への遷移 $4t_{1u} \rightarrow 4s$ (F6), $5a_{1g} \rightarrow np$ (F9) に対応するピークが特徴的に強く観測される。本 来これらの遷移は, 価電子軌道とリュドベリ軌道 との波動関数の重なりが小さいために振動子強度 が小さく, 実際に, 光吸収スペクトルにおける強 度は著しく弱い。一方, $4t_{1u} \rightarrow 6a_{1g}$ (F5), $5a_{1g} \rightarrow$ $6t_{1u}$ (F11) などの inner-well軌道への光吸収断面積 は極めて大きいにもかかわらず, F⁻の効率曲線に はこれらの遷移はほとんど見られない。これは, 自動イオン化の速度が極めて大きいことで説明さ れる。以上の議論を一般化し, さらに① SF₆の垂 直イオン化ポテンシャル⁴²⁾ から求めた価電子軌道 の軌道エネルギー,および②推定される励起空軌 道の項値を用いて,各ピークの帰属を表2のよう に行った。例えば,図18(a)の中で最も強いF1 とF2はそれぞれ主に1 $t_{1g} \rightarrow 4p$, $5t_{1u} \rightarrow 4s$ の outerwell軌道への遷移であると結論される。また,光 吸収スペクトル中で幅広い $5a_{1g} \rightarrow 6t_{1u}$ (F11)の ピークに隠れている $5t_{1u} \rightarrow 2t_{2g}$ (F8)の遷移が新た に確認された。 $2t_{2g}$ 軌道は inner-wellに存在するが $6a_{1g} や 6t_{1u}$ に比べて弱く束縛されており空間的な 広がりが大きい。そのため,他の価電子状態に比 べてイオン対状態への分岐比が大きくなると予想 される。

8.2 四フッ化メタン

図 19に CF₄の光解離によって生成する F⁻イオン の効率曲線を示す¹⁵⁾。イオンの出現電位は F⁻($^{1}S_{g}$) + CF₃⁺($\tilde{X}^{1}A_{1}$)の生成に対応する熱化学的しきい 値よりも 2eV ほど高くなった。スペクトルには¹T₂ 対称性のリュドベリ状態への遷移に対応するピー クが観測され、全吸収断面積のデータ^{35,43)}に基づ

0.00

いてそれらの同定を行った。 $CF_4^+(\tilde{X}^2T_1, \tilde{A}^2T_2)$ に収斂する解離性のリュドベリ状態が幅広く強い ピークを与えることから、F+CF₃へ解離する際 にリュドベリ状態とイオン対状態のポテンシャル エネルギー曲面間の擬似交差が起こり、効率よく F⁻ + CF⁺を生成するものと考えられる。たとえ ば、 ピーク $F1 \ge F2$ はそれぞれ $1t_1 \rightarrow 3pt_2$, $4t_2 \rightarrow$ 3sa」の遷移に対応しており、基底状態のF原子と $CF_3^{**}(3pe'^2E')$ $\pm tct CF_3^{**}(3sa_1'^2A_1')$ $O \ni \emptyset$ カルにそれぞれ解離する。これらのラジカルは鷲 田ら⁴⁴⁾ が CF₃Br 等の光分解発光分光で検出した $CF_3^*(1^2E')$ または $CF_3^*(2^2A_1')$ と同じものであると 予想される。両ラジカルの励起エネルギーは CF₃ $(X 1^{2}A_{1})$ から測って 6.4eV と報告されており、こ れから、 $CF_4 \rightarrow CF_3^{**}(3pe'^2E', 3sa_1'^2A_1') + F$ (²P_u)の解離限界は約11.9eVと見積もられる。これ らの結論は、LeeらのCF₄の蛍光励起スペクトル のデータ⁴⁵⁾ からも支持される。 $CF_4^{**}(C^2T_2)$ へ収 斂する $3t_2 \rightarrow npt_2$ リュドベリ状態 ($n \ge 4$) への遷移 に対応するピークは、長い振動のプログレッショ

Table 2 Summary of the observed features in the F^- photodissociation efficiency curve of SF₆ (Ref. 13), photoabsorption spectrum of SF₆ (Ref. 40), and electron energy loss spectrum of SF₆ (Ref. 41). Photon energies and term values for transitions to the virtual orbitals are in eV.

Feature	Photon Energy *	Assignment	Term value ^b				
<i>F</i> 1	13.2	$1t_{1g} \rightarrow 4p$	2.5	<i>F</i> 8	22.1	$\begin{cases} 5t_{1u} \to 2t_{2g} \\ 4t_{1u} \to ns(n \ge 6) \end{cases}$	-5.2 0.6
F2	14.3	$\begin{cases} 5t_{1u} \to 4s \\ 3e_g \to 6t_{1u} \end{cases}$	2.6 4.4		24.6	$5a_{1g} \rightarrow 4p$	2.4
<i>F</i> 3	14.6	$1t_{1g} \rightarrow 5p$	1.1	<i>F</i> 9	25.7	$5a_{1g} \rightarrow 5p$	1.3
<i>F</i> 4	15.7	$\begin{cases} 5t_{1u} \to 5s\\ 1t_{2s} \to 6t_{1u} \end{cases}$	1.2 4.1		26.2	$5a_{1g} \rightarrow 6p$	0.8
<i>F</i> 5	17.0	$4t_{1u} \rightarrow 6_{1g}a$	5.7	<i>F</i> 10	11.52°	$\begin{cases} 1t_{1g} \to 6t_{1u} \\ 5t_{1u} \to 6a_{1g} \end{cases}$	4.2 5.4
<i>F</i> 6	19.6	$4t_{1u} \rightarrow 4s$	3.1	<i>F</i> 11	23.2°	$\begin{cases} 5a_{1g} \rightarrow 6t_{1u} \\ (5t_{1u} \rightarrow 2t_{2g}) \end{cases}$	3.8 -6.3
<i>F</i> 7	21.2	$4t_{1u} \rightarrow 5s$	1.5	F12	28.3°	$4t_{1u} \rightarrow 2t_{2g}$	-5.6

^a The energies for features F1 - F9 are estimated from the peak maximum positions in the F⁻ efficiency curve. ^b Calculated by using eq. (2) in the text. The vertical ionization potentials for the ionic states of SF₆ are taken

from the He I and He II photoelectron spectra reported by other workers (Ref. 42).

2010

 $^{\rm c}$ from Refs. 40 and 41. These features are not observed in the F $^{\rm c}$ efficiency curve.

ンを示す (バンドF6, F7)。この状態からイオン 対を生成する過程としては次の2通りが考えられ る。(1) $4t_2 \rightarrow npt_2{}^1A_1$ または $1t_1 \rightarrow npt_2{}^1T_2$ リュドベ リ状態へ輻射遷移し, それぞれ CF₃**($npa_2{}^{n}{}^2A_2{}^{n}$) + F(²P_u) または CF₃**($npe{}^{i}{}^{2}E{}^{i}$) + F(²P_u) への解 離の途中でイオン対状態へ乗り移る。(2) CF₂** + F + Fへ解離し, その途中でF⁻(${}^{i}S_{g}$) + CF₂* + Fの ポテンシャルに移行する。

9. 正イオンと負イオンの飛行時間同時計 測

9.1 概念

これまではイオン対解離で生成する負イオンの みに着目し、その解離効率曲線を測定することに よって得られた研究成果を主に紹介してきた。し かしこの方法では相手側の正イオンの電子状態、 前期解離に伴う運動エネルギー放出、初期生成す る超励起状態の対称性等についての情報が不足し ている。最近、我々は正イオンと負イオンの飛行 時間同時計測法 (PINICO法)を開発し、多彩なイ オン対生成過程のいっそうの理解に向けて大きな 進展を遂げた^{19,20)}。この手法は光イオンの単分子 分解の研究に従来から用いられている電子・イオ ン同時計測法 (PEPICO法)のバリエーションとみ なすことができる。ただし、PINICO法では磁場 やパルス電場を使って、電子による擬似信号を極 力抑える工夫をしている。

9.2 実験方法

UVSOR 軌道放射光施設のビームライン BL2B2 に設置されている分子線光イオン化分光装置で実 験を行った。図20に実験装置を示す¹⁹⁾。偏向磁石 からの軌道放射を 1m瀬谷 – 波岡型分光器で分光し た後($\Delta \lambda = 0.8$ Å), 100 μ mのノズルから噴出 した試料気体に照射し,生成した負イオンと正イ オンを質量分析して検出する。光の偏光は質量分 析計の対称軸に垂直な方向を向いている。以下, 酸素分子を例にとり説明する。真空紫外光で励起 された O_2 分子は、 O_2^+ に収斂するリュドベリ状態 を経由してイオン対を生成する(5.1節参照)。O⁺ とO⁻は弱い電場(10V/cm)によってそれぞれ反対 の方向に加速され、別々の2重集束飛行時間型質 量分析計で質量選別されたのちに検出される。O⁺ の信号を時間電圧変換器のスタートに入れ、O⁻の 信号をストップに入れて両者の飛行時間差に対応 した同時計測の信号を得る。O⁺ とO⁻の計算上の 飛行時間はそれぞれ 3.64 μ s と 17.04 μ s であり、図 21 に示すとおりその差にほぼ近い位置(14.2 μ s) に顕著なピークが現れる。したがってこのピーク は同時計測信号であると考えられる。

Fig.19 Photodissociation efficiency curve of Fproduced from CF₄ taken at a wavelength resolution (FWHM) of 0.8Å. Wavelength intervals are 0.5Å at 480 – 750Å or 1Å at the other regions. The adiabatic and vertical ionization potentials for the five lowest ionic states of CF₄^{*} are indicated by the dashed lines with marks A and V, respectively. The thermochemical threshold for the formation of $F({}^{2}P_{\nu})$ + CF₃^{*}($\widetilde{X} {}^{1}A_{1}$ ') is also indicated.

Fig.20 Schematic diagram of the time – of – flight mass spectrometers and data acquisition system for coincidence spectroscopy. NS: nozzle source; SK: conical skimmer; PR: photoexcitation region; PB: monochromatized photon beam; PD: photon detector; G1 – G5: grids; CA: capillary array plate; FT_P : flight tube for positive ions; FT_N: flight tube for negative ions; MCP_P: microchannel plates for positive -ion detection; MCP_N: microchannel plates for negative -ion detection; PREAMP: pre -amplifier; AMP: main -amplifier; DISC discriminator; TAC: time -to -amplitude converter; DELAY: delay circuit; MCA: multichannel analayzer; PG: pulse generator; HPAMP: high - speed power amplifier.

この PINICO信号を 17-19eVの光エネルギーの 範囲で測定して得た効率曲線は,ビームライン BL3Bで測定したO⁻の解離効率曲線とおおむねー 致した。また,20-25eVの範囲では図3の実線の ような効率曲線が得られた。この曲線はO⁻の効率 曲線(図3の破線,5.1節参照)とはかなり異なっ た振る舞いを示す。これは,図20の配置で,放射 光の偏光方向に大きな運動エネルギーを放出しな がら解離したイオンは偏光方向と垂直に解離した イオンに比べて検出感度が格段に悪くなることで 理解される。このため, $\Sigma \rightarrow \Sigma$ の平行遷移で生成 するリュドベリ状態の信号強度は,イオン対生成 の解離限界を越えて離れれば離れるほど見かけ上 弱くなる。

9.3 亜酸化窒素からのイオン対と中性種への3 体解離過程

6.1節で述べた N₂O からのイオン対生成過程を PINICOを行うことで再検討した²⁰⁾。その結果,光 のエネルギーが低い領域では 2体解離 N₂O→O⁻+ N₂⁺が主要であるが,25eV 以上では 3体解離 N₂O →O⁻+ N⁺ + N でばらばらに壊れてしまうことを 見いだした。本稿では紙面の関係で結果の概略の み紹介する。

図 22に飛行時間同時計測スペクトルを示す。長 波長側では、 N_2^+ とO⁻の飛行時間差に対応する位 置(6.5 μ s)に2体解離の顕著なピークが現れる。 454 Åでは、2体解離のピークがほとんど消滅し、 代わりに7.2 μ sに3体解離のピークが観測された。 その形状から前期解離における運動エネルギー放

Fig.21 Coincidence spectra of O⁺ and O⁻ produced from O₂ measured at three photon wavelengths. A wavelength resolution (FWHM) is set at 0.8Å. The thermochemical threshold for the lowest ion- pair formation channel, O⁻ (${}^{2}P_{u}$) + O⁺(${}^{4}S_{u}$), is 17.272eV (717.81Å).

出を見積もった結果,3体解離ではN⁺イオンは分 子中央のN原子に由来すること,2つの化学結合 がほぼ同時に切断されること,光励起で生成する 超励起状態は¹Σ⁺の対称性を持つことなどが明ら かになった。また,2体解離と3体解離のPINICO 信号の面積強度を光のエネルギーに対してプロッ トして得られた解離効率曲線(図23)には多くの 構造が見られる。一部を除き,これらは2電子励 起したリュドベリ状態に帰属される。

10. まとめ

我々は、イオン対解離によって生成する負イオ ンあるいは正・負両イオンを検出する実験手法を 確立し、それらが分子のリュドベリ状態や2電子 励起状態の鋭敏なプローブとなることを実証した。 その際に、通常のイオン化と異なり電子の放出が ないので、光のエネルギーがそのまま分子の内部 エネルギーに対応づけられる。これらの特徴を生 かすことによって、今後はクラスターや擬縮相中

Fig.22 Coincidence spectra of ion pairs produced from N₂O measured at a wavelength resolution (FWHM) of 0.8Å. The two – and three – body dissociation processes are denoted by O⁻ + N₂⁺ and O⁻ + N⁺, respectively. The thermochemical threshold for the formation of O⁻ (²P_u) + N⁺(³P_g) + N(⁴S_u) is 24.48 eV (506.5 Å).

の超励起状態の分光学ならびに動力学的研究を発 展させるうえで、本手法の重要性がさらに増して いくものと確信している。

本稿で述べた成果の大部分は姫路工業大学の小 谷野猪之助教授,環境研究所の今村隆史博士,東 京都立大学の鈴木信三博士との共同研究によるも のである。また,正イオン負イオン同時計測法の 成果は分子科学研究所の吉田啓晃博士,服部秀男 氏の協力によるものである。以上の共同研究者お よび UVSOR 施設のスタッフの方々に対して,深 謝の意を表明する。

文献

- 1) 中村宏樹, 高木秀一: 日本物理学会誌 45, 87 (1990).
- J. Berkowitz: Photoabsorption, Photoionization and Photoelectron Spectroscopy (Academic, New York, 1979).
- M. B. Robin: Higher Excited States of Polyatomic Molecules (Academic, New York, 1985) Vol. 3.
- I. Nenner and J. A. Beswick: Handbook on Synchrotron Radiation, ed. G. V. Marr (North-Holland, Amsterdam, 1987) Vol. II.
- 5) 小谷野猪之助:分子科学講座11 励起分子の化学, 田中郁三編(共立出版, 1987)10章.
- 6) 伊吹紀夫:日本分光学会 測定シリーズ24 シンクロトロン放射光-化学への基礎的応用,市村禎二郎・ 籏野嘉彦・井口洋夫編(学会出版センター,1991)3章.
- V. H. Dibeler and J. A. Walker: J. Opt. Soc. Am. 57, 1007 (1967).
- P. M. Dehmer and W. A. Chupka: J. Chem. Phys. 62, 4525 (1975).
- W. A. Chupka, P. M. Dehmer, and W. T. Jivery: J. Chem. Phys. 63, 3929 (1975).
- H. Oertel, H. Schenk, and H. Baumgärtel: Chem. Phys. 46, 251 (1980).
- K. Mitsuke, S. Suzuki, T. Imamura, and I. Koyano: J. Chem. Phys. 92, 6556 (1990).
- K. Mitsuke, S. Suzuki, T. Imamura, and I. Koyano: J. Chem. Phys. 93, 1710 (1990).
- K. Mitsuke, S. Suzuki, T. Imamura, and I. Koyano: J. Chem. Phys. 93, 8717 (1990).
- 14) K. Mitsuke, S. Suzuki, T. Imamura, and I. Koyano: J. Chem. Phys. 94, 6003 (1991).
- 15) K. Mitsuke, S. Suzuki, T. Imamura, and I. Koyano: J. Chem. Phys. 95, 2398 (1991).
- 16) S. Suzuki, K. Mitsuke, T. Imamura, and I. Koyano: J. Chem. Phys. 96, 7500 (1992).
- 17) K. Mitsuke, S. Suzuki, T. Imamura, and I. Koyano:

Org. Mass Spectrom. 28, 335 (1993).

- 18) K. Mitsuke, H. Hattori, and H. Yoshida: J. Chem. Phys. 99, 6642 (1993).
- K. Mitsuke, H. Yoshida, and H. Hattori: Z. Phys. D 27, 267 (1993).
- H. Yoshida and K. Mitsuke: J. Chem. Phys. 100, 8817 (1994).
- 21) L. Åsbrink, C. Fridh, E. Lindholm, and K. Codling: Phys. Scr. 10, 183 (1974).
- 22) K. Codling and A. W. Potts: J. Phys. B 7, 163 (1974).
- 23) B. Narayana and W. C. Price: J. Phys. B 5, 1784 (1972).
- 24) P. M. Guyon, T. Baer, and I. Nenner: J. Chem. Phys. 78, 3665 (1983).
- 25) L. C. Lee, R. W. Carlson, D. L. Judge, and M. Ogawa: J. Quant. Spectrosc. Radiat. Transfer 13, 1023 (1973).
- 26) J. Berkowitz and J. H. D. Eland: J. Chem. Phys. 67, 2740 (1977).
- 27) P. M. Guyon and I. Nenner: Appl. Opt. 19, 4068 (1980).
- 28) U. Fano: Phys. Rev. 124, 1866 (1961): U. Fano and J. W. Cooper: ibid. A 137, 1364 (1965).
- 29) 佐藤幸紀:日本分光学会 測定法シリーズ 24 シンク ロトロン放射光-化学への基礎的応用,市村禎二郎・ 籏野嘉彦・井口洋夫編(学会出版センター,1991) 5章.
- 30) C. Y. R. Wu and D. L. Judge: J. Chem. Phys. 74, 3804 (1981).
- 31) J. Erickson and C. Y. Ng: J. Chem. Phys. 75, 1650 (1981).
- 32) K. H. Sze, C. E. Brion, X. M. Tong, and J. M. Li: Chem. Phys. 115, 433 (1987).
- 33) L. Wang, Y. T. Lee, and D. A. Shirley: J. Chem. Phys. 87, 2489 (1987).
- 34) P. Plessis, P. Marmet, and R. Dutil: J. Phys. B 16, 1283 (1983).
- 35) L. C. Lee, E. Phillips, and D. L. Judge: J. Chem. Phys. 67, 1237 (1977).
- 36) E. E. Koch, V. Saile, and N. Schwentner: Chem. Phys. Lett. 33, 322 (1975).
- 37) E. Lindholm and J. Li: J. Phys. Chem. 92, 1731 (1988).
- 38) J. L. Dehmer: J. Chem. Phys. 56, 4496 (1972).
- D. Blechschmidt, R. Haensel, E. E. Koch, U. Nielsen, and T. Sagawa: Chem. Phys. Lett. 14, 33 (1972).
- M. Sasanuma, E. Ishiguro, H. Masuko, Y. Morioka, and M. Nakamura: J. Phys. B 11, 3655 (1978).
- 41) K. H. Sze and C. E. Brion: Chem. Phys. 140, 439 (1990).
- 42) L. Karlsson, L. Mattsson, R. Jadrny, T. Bergmark, and K. Siegbahn: Phys. Scr. 14, 230 (1976).
- 43) W. R. Harshbarger, M. B. Robin, and E. N. Lassettre: J. Electron Spectrosc. Relat. Phenom. 1, 319 (1972 / 1973).
- 44) N. Washida, M. Suto, S. Nagase, U. Nagashima, and K. Morokuma: J. Chem. Phys. 78, 1025 (1983).
- 45) L. C. Lee, X. Wang, and M. Suto: J. Chem. Phys. 85, 6294 (1986).

前期解離

中性分子やイオンの励起状態が束縛性のときに、す なわち結合性のポテンシャル曲線をもつときに、内部 エネルギーがその解離限界に届かないにもかかわらず 分子が解離を起こすことがある。この現象を前期解離 と呼ぶ。たとえば、束縛性状態がある核間距離におい て別の解離性状態と摂動相互作用しているとする。こ のとき、内部エネルギーがポテンシャル交差点(2つの 電子状態の対称性が同じであれば擬似交差点)のエネ ルギーに近ければ、束縛性状態から解離性状態へ移行 してそのまま解離する道筋が開けてくる。これ以外の 状況としては、単一の振動モードの励起が起こったと きに、対応する基準座標に沿って解離するにはエネル ギーが不足しているとしても、振動エネルギーの再分 配によって別の振動モードが励起されその座標に沿っ た解離が起こる可能性が考えられる。

自動イオン化

分子の2電子励起状態または深い価電子や内殻電子 が励起した状態は、イオン化の電子的連続状態の中に 離散的に存在する。したがって、10⁻¹³-10⁻¹⁵秒のうち に電子間相互作用によって分子から電子が放出されて イオン化が起こる。これを自動イオン化と呼ぶ。自動 イオン化は真空紫外光で分子を励起したときの後続過 程として普遍的な現象であり、光吸収曲線やイオン化 効率曲線上に直接イオン化の連続状態に重なった共鳴 構造として観測される。さらに、励起光波長を変えな がら光電子スペクトルを測定すれば、直接イオン化と 自動イオン化を明確に区別し、生成するイオンの振動 状態分布を解析して関与する中性励起状態のポテンシ ャルエネルギー曲線を推定することができる。