

解説

ments) of the distribution. For the description of the EXAFS cumulants which originate from anharmonic vibration, two different quantum-statistical approaches are proposed: the perturbation method and the path-integral effective classical potential method. These two methods are formulated and the results of numerical calculations are comparatively discussed, together with the help of experimental data.

1. はじめに

EXAFS (広域 X 線吸収微細構造, extended x-ray-absorption fine structure)は、局所構造解析手段として、結 晶・非晶質・溶液・液体・触媒・生体・鉱物・表面・界面 など非常に幅広い分野に応用されている分光学的手法であ る。特に単結晶でない系には非常に有力な構造解析手法と なる。EXAFS により得られる情報は主として X線を吸 収する元素周辺に位置する原子の配位数と原子間距離であ る。しかしながら、そもそも EXAFS は X 線吸収元素の まわりの動径分布関数を反映するものであるから、配位数 (動径分布関数の積分値)や原子間距離(動径分布の平均 位置)以外にもより高次の情報が含まれている。2次の情 報,即ち,動径分布の分散はいわゆる Debye-Waller の温 度因子と呼ばれ、熱振動の振幅や静的な歪みによる disorder を表す。3次の情報は動径分布の非対称性を示し、 非調和性と関係する物理量である。これらは固体の基本的 な熱的性質である弾性定数(の温度変化)や熱膨張,ひい ては固体中の原子間ポテンシャルと直接対応し, EXAFS で得られる情報は貴重である。

筆者は10年以上前から, EXAFS の温度依存性と原子間 ポテンシャルとの対応に関する実験的・理論的研究を行っ てきた。本稿では,まず,EXAFS の温度依存性がこれま でどのように扱われてきたかを歴史として振り返ってみた い。その後で筆者の最近の理論的研究を概説する。EX-AFS の温度依存に関する理論といっても,とどのつまり は原子の非調和振動をいかに量子統計力学的に解き,EX-AFS で得られる物理量の熱平均を計算するかである。量 子統計力学における計算手法は摂動展開法と経路積分法が ある。これまでの結果から両者の長所短所およびその限界 などについて解説する。

2. EXAFS の温度依存に関する歴史的背景

2.1 調和振動

1971年, Sayers, Stern, Lytle¹⁾がフーリエ変換法の導入 で, EXAFS の理論式

$$\chi(k) = \frac{\mu - \mu_0}{\mu_0} = A_0(k) e^{-2\sigma^2 k^2} \sin\left(2kR + \phi(k)\right)$$
(1)

* 東京大学大学院理学系研究科化学専攻 〒113-0033 東京都文京区本郷 7-3-1
 TEL: 03-5841-4333 FAX: 03-3812-1896 E-mail: toshi@chem.s.u-tokyo.ac.jp

を確立した。ここで、kは光電子の波数、 μ は吸収係数、 μ_0 は仮想的な単独原子の吸収係数であり、簡単のため吸 収原子まわりの配位原子は1種類としている。 $\chi(k)$ は実 験的に得られるスペクトル(EXAFS 関数)である。 A_0 (k)は温度に(ほとんど)依存しない振幅、Rは原子間距 離、 $\phi(k)$ は位相シフトである。この時点で既に Debye-Waller 温度因子 exp $[-2\sigma^2k^2]$ (σ^2 は Gauss 型動径分布 の分散)が導入されていることがわかる。

いま,系に静的歪みがなく,かつ,独立振動子(Einstein)モデルが成り立つとすると,量子統計力学の初歩 の教科書に従って

$$\sigma^2 = \sigma_0^2 \coth\left(-\beta\hbar\omega\right) \tag{2}$$

が得られる。ここで、 $\sigma_0^2 = \hbar/(2\mu\omega)$ (れは Planck 定数を 2πで除したもの、 μ は換算質量、 ω は Einstein 振動数)、 $\beta = (k_B T)^{-1}$ (k_B は Boltzmann 定数、T は温度)である。 つまり、EXAFS と調和ポテンシャルが Einstein モデル の範囲で対応付けられたことになる。

1976年, Beni と Platzman²⁾が Debye モデルを EXAFS の Debye-Waller 因子に適用した。fcc や bcc の単原子固体 (金属や希ガス結晶など)などの光学フォノンが存在しな い系に Einstein モデルを適用しても物理的に意味のある 結果になりにくいが, Debye モデルの導入で固体への応 用の道がかなり開けた。今日でもこの表式は超微粒子や薄 膜などの Debye 温度を実験的に求める手段としてよく利 用されている。

一方,分子に関しては EXAFS の応用があまりなされ ないため検討がやや遅れたが,1984年に Boland と Baldeschwieler³⁾は,多原子分子の調和振動に関して検討 した。彼らは,多体力である変角振動なども考慮し,基準 振動解析による理論的考察を行っている。このころから徐 々に実験的研究にも温度変化 EXAFS が利用され始めた。 筆者が超微粒子・担持クラスターの温度変化 EXAFS を 始めたのも1985年であった⁴⁾。

2.2 動径分布の非対称性とキュムラント展開

これまでの話は調和近似に基づいた理論的考察であっ た。これが非調和振動を取り入れた理論に発展する前に, EXAFSの解析手法の発展があった。式(1)は前述の通り 動径分布を Gauss 関数で記述している。つまり調和近似 である。1979年, Eisenberger と Brown⁵⁾は動径分布関数 に非対称性が存在する場合の問題点を指摘した。X 線回 折においては,温度因子を Gauss 関数のまま非調和性の 大きい固体を解析しても,非調和性に由来するはずの熱膨 張を格子定数として正しく記述できる。一方,EXAFS で は,非対称分布を示す系を Gauss 分布で近似して解析す ると原子間距離は異常に短く求められてしまうことがわか った。熱膨張を正しく記述するどころか原子間距離は温度 上昇とともに短縮してしまうことが示唆され,いったんは 分布の非対称性が大きい系に EXAFS は適用しにくいと 憂慮された。

1983年, G. Bunker⁶⁾は非対称分布の解析法としてキュ ムラント展開法を導入した。これにより EXAFS の理論 式は

$$\chi(k) = A_0(k) \exp\left[-2C_2k^2 + \frac{2}{3}C_4k^4 - \cdots\right] \\ \times \sin\left[2kR + \phi(k) - \frac{4}{3}C_3k^3 + \cdots\right]$$
(3)

のように補正された。ここで C_n はn次のキュムラントで,動径分布のモーメントと次のような関係がある。

$$R = \langle r \rangle, \quad C_2 = \langle (r-R)^2 \rangle, \quad C_3 = \langle (r-R)^3 \rangle,$$

$$C_4 = \langle (r-R)^4 \rangle - 3C_2^2, \cdots$$
(4)

ここで〈〉は動径分布に基づいた熱平均を示す。この表 式により Gauss 分布近似では本質的に扱えなかった熱膨 張などの非調和性を正しく記述できるようになり,問題点 とされていた非調和性がむしろ有益な情報であると考えら れるようになった。モデルに依存しないこの方法は今日ま でもっとも一般的な解析手法として広く用いられている。 欠点は展開であるということで Gauss 分布から大きくは ずれる分布には展開項が多くなり実際上利用できない(経 験的には4次が限界で,通常C4は誤差が非常に大きい)。 現在までより直接的に動径分布を導出する手法が開発され つつあるが,この点はここでは割愛させていただく。

2.3 摂動論に基づく非調和振動の導入

キュムラント展開法により EXAFS から非調和性に関 する情報が実験的に得られることになり、キュムラントと 原子間ポテンシャルとの関係が注目された。1989年、 Yokoyama 6ⁿは Morse ポテンシャルや Madelung ポテ ンシャルを仮定し、独立振動子近似の範囲で、古典統計力 学的に、2次3次のキュムラント C₂, C₃ とポテンシャル 定数間の関係を求めた。金属・イオン結晶などの実験デー タと比較検討し、熱膨張やイオン結晶の Madelung 定数 がかなり定量的によく再現されることが示された。

1991年, Rabus⁸⁾は量子統計力学的に,独立振動子近似 (非調和 Einstein モデル)の範囲で*R*, *C*₂, *C*₃ とポテンシ ャル定数間の関係を導出した。この研究は未発表であった が,1993年, Frenkel と Rehr⁹⁾が一次摂動展開法を用い て同じ結果を得た(摂動展開法に関しては後述する)。同 じく1993年, Fujikawa と Miyanaga¹⁰⁾が Green 関数を用 いた一次展開法で一気に 3 次元固体に適用できる一般的 な表式を導出,一次元モデルへの応用例を示した¹¹⁾。こ れにより理論的には摂動法によって EXAFS のキュムラ

-20 -

ントを解くという命題はほぼ完成したといえる。

2.4 摂動理論と実験の比較

これまで述べた事項はある程度客観的な歴史である。本 稿では、これ以降、1993年以来筆者らがこの問題にどう 対応してきたかを概説する。筆者らはともかく実験と理論 の比較を行うことで、EXAFS からどのような情報が得ら れるものかに注目した。最終的な目標は固体や固体表面の 振動が EXAFS でどこまでわかるかであったが、さしあ たり比較の目的で素性のわかっている分子から検討を始め た。

1996年,二原子分子 Br2 と最も単純な多原子分子であ る直線三原子分子(気体 HgBr₂ など)を例として実験的 に得られたキュムラントから3次の非調和ポテンシャル の決定を試みた12,13)。直線三原子分子の理論式は、基準振 動を基底として一次摂動展開法により導出した。Br2 に関 しては2,3次の力の定数がRamanの文献値とよく一致し た。三原子分子の3次の力の定数は文献値がなかったが, 2次の力の定数は IR, Raman の文献値とよく一致した。 EXAFSにより2,3次の力の定数が定量的に求められる ことが示された。さらに続いて、同じ1996年、正八面 体14,15)や正四面体16)分子に拡張し、特に多体力である変角 振動が非調和性にどのように効いてくるかを検討した。分 子の非調和振動を調べる手段として EXAFS が適切であ るとは考えにくいが、これらの基礎的な検討から、固体や 固体表面の非調和振動を研究する上で EXAFS はかなり 定量的に信頼できる情報を与えるだろうと確信できた。

1997年から固体への適用を試み,まず固体 Kr の熱膨張 や非調和性を解析した¹⁷⁾。この研究は後述する。3 次元固 体の表式は既に Fujikawa と Miyanaga¹⁰⁾により一般式が 導出されていたが,実際に数値計算することは極めて難解 であった。そのためこの際は固体 Kr をクラスターで近似 して計算した。クラスターで近似したため信頼できる情報 は第1配位圏のみにとどまった。高配位の情報を理論的 に解釈するため古典的なモンテカルロシミュレーションを 行った。第一配位圏の量子論的解釈と高配位圏の古典的解 釈はともに成功を収めたが,量子摂動展開に限界を感じた 研究でもあった。

2.5 経路積分法

摂動展開法の短所は以下のようであろう。まず,非調和 性が大きい場合一次摂動では不十分である。特に4次以 上のキュムラントは初項にすでに二次摂動項が入ってきて しまう。非調和 Einstein モデルでは二次摂動による C₄の 表式が利用可能な形で導出できる¹⁸⁾が,多原子分子や固 体では式の導出が難解な上,実際に数値計算を行うことは ほとんど不可能であろう。また,固体において,分子の変 角振動のような多体力をうまく導入することは難しい。多 体力は共有結合性結晶(変角)の他,金属(自由電子とイ オン核)でも重要であり,固体の振動を扱うのに導入が求 められるものである。

量子統計力学において有限温度の物理量を計算する他の 手法として経路積分法がある。分子や固体中の原子の振動 を取り扱う場合,我々は大抵の場合固有関数と基底として 頭の中を逆空間(分子ならエネルギー固有値)に置き換え ている。しかしながら固体の振動は必ずしも逆空間の描像 の方が都合いいとは限らない。そもそもEXAFSは,振 動分光のような固有値を観測するものではなく,吸収原子 と配位原子の実空間上での運動を反映するものであるか ら,固有関数に分解できるものではない。つまり実空間の 方が考えやすいともいえる。量子論を実空間描像とし古典 論的に取り扱うのが経路積分法である。古典論的とはいっ ても,経路積分が量子力学を完全に満足するものであるこ とはいうまでもない。

1997年, Fujikawa ら¹⁹⁾は EXAFS のキュムラントと原 子間ポテンシャルの関係を経路積分有効古典ポテンシャル (path-integral effective classical potential, PI-ECP) 法に より求めた。文献19)は経路積分を EXAFS のキュムラン トに適用した最初の研究である。非調和 Einstein モデル の範囲ではあったが,非調和性が大きく摂動法では近似し 得ないポテンシャルにおいても経路積分法が有効であるこ とが示された。

この研究を受けて,筆者は,1998年, PI-ECP 法によ る計算と実験データを比較検討することを試みた^{18,20,21)}。 ここで取り上げたのは二原子分子 Br2, 固体 Kr, Ni, Cu な どであった。PI-ECP 法を二原子分子に適用することは直 ちに行え、数値計算も容易である。一方、希ガス固体の熱 的性質などを描写するのに有効な方法としても用いられて きているが22,23), これらで検討された物理量は比熱などの 熱力学的諸量であり、分配関数のみの導出で十分である。 EXAFS のキュムラントは決して分配関数から導出できな いのでさらに理論的検討が必要であった。この点は EX-AFS が一次元の情報であることが幸いし、密度行列も一 次元(結合方向)の射影のみをとればよいことがわかった。 さらに、希ガス固体のような二体ポテンシャル近似がよく 成り立つ系の他に、金属のような多体力の結合を作る場合 に PI-ECP 法を適用することを試みた。金属の熱的性質 を PI-ECP 法で検討した研究はこれまでなく、これは一 般的な立式が難解であったためである。ところが、金属の 古典的モンテカルロ(MC)シミュレーションでよく用い られる EAM (embedded-atom method)^{24,25)}が PI-ECP 法 にあてはめやすい表式であることを発見し, EAM 法なら 金属への適用も可能であることがわかった。

PI-ECP 法は後述するがかなり大胆な近似を導入する。 より厳密な経路積分法として経路積分モンテカルロ (path-integral Monte-Carlo, PIMC)法が知られている。 将来はともかく現状で PIMC 法は数値計算に莫大な時間 を要し、かえって計算精度を落とすことになりかねない。 今のところ EXAFS の温度変化に PIMC 法が採用された ことはない。

この経路積分法の研究で筆者の目的はある程度果たせ, 研究は一段落した。以下の章で筆者らが行った研究を解説 する。多次元系の表式の導出はあまりにも複雑なので, 摂 動展開法に関しては非調和 Einstein モデルに限り,これ らの詳細は原著論文を参照していただくこととする。以 下,摂動展開法の表式(非調和 Einstein モデル),PI-ECP 法の理論(単原子 Bravais 格子固体),摂動計算の例 (固体 Kr のクラスター近似),摂動展開法と PI-ECP 法の 比較(二原子分子 Br₂),PI-ECP 計算の例(固体 Ni)の 順に概説する。

3. 摂動展開法による EXAFS のキュムラント

ここでは独立非調和振動子モデルに基づいて, EXAFS の4次までのキュムラントを2次摂動法により導出する 概略を述べる。多次元系1次摂動法の結果は文献10, 11, 12, 14, 17)を参照されたい。

量子力学的ハミルトニアン*H*が*H*= H_0 +H'(H_0 は無 摂動項,H'は摂動項)で記述され, H_0 の固有値 E_n ,固 有関数 $|n\rangle$ は既知とする。密度演算子 exp $[-\beta H]$ を

$$e^{-\beta H} = e^{-\beta H_0} f(\beta) \tag{5}$$

と置くと、 $f(\beta)$ は積分方程式

$$f(\beta) = 1 - \int_{0}^{\beta} e^{\beta' H_{0}} H' e^{-\beta' H_{0}} f(\beta') d\beta'$$
(6)

を満たす。これを逐次的に解くことで任意の物理量Mの 熱平均 $\langle M \rangle$ が

$$\langle M \rangle = \frac{1}{Z} \operatorname{Tr} M e^{-\beta H_0} f(\beta), \quad Z = \operatorname{Tr} e^{-\beta H_0} f(\beta)$$
(7)

により摂動的に計算できる。ここで Tr はトレース、Z は 分配関数である。二次摂動展開では $f(\beta)$ は

$$f(\beta) = 1 - \int_{0}^{\beta} \tilde{H}'(t_1) dt_1 + \int_{0}^{\beta} \int_{0}^{t_1} \tilde{H}'(t_1) dt_1 \tilde{H}'(t_2) dt_2 dt_1$$
(8)

で与えられる。但し、 $\hat{H}' = e^{\beta H_0} H' e^{-\beta H_0}$ (ハミルトニアンの相互作用表示)である。

独立非調和振動ポテンシャルV(r)(rは原子間距離)を

$$V(r) = \frac{1}{2} \kappa_0 (r - r_0)^2 - \kappa_3 (r - r_0)^3 + \kappa_4 (r - r_0)^4$$
(9)

で与えることとする。(9)式第1項は調和項で無摂動項と なり,第2,3項を摂動項*H*と見なす。調和振動子の固有 関数を基底として,(7,8)式の積分を解析的に実行する と,分配関数*Z*は最終的に

$$Z \cong Z^{(0)} + Z^{(1)} + Z^{(2)}$$

$$Z^{(0)} = \frac{1}{1-z}$$

$$Z^{(1)} = \frac{\kappa_4 \sigma_0^4}{k_B T} \frac{3(1+z)^2}{(1-z)^3}$$

$$Z^{(2)} = \frac{\kappa_3^2 \sigma_0^6}{(\hbar\omega) (k_B T)} \frac{11z^2 + 38z + 11}{(1-z)^3}$$
(10)

で与えられる。但し、 $z = \exp \left[-\beta \hbar \omega\right]$ である。全く同様 にして、

$$R \cong r_0 + \frac{6\kappa_3 \sigma_0^4}{\hbar \omega} \frac{1+z}{1-z} \tag{11}$$

$$C_2 \cong C_2^{(0)} + C_2^{(1)} + C_2^{(2)} \tag{12}$$

$$C_{2}^{(0)} = \sigma_{0}^{2} \frac{1+z}{1-z}$$

$$C_{2}^{(1)} = -\frac{\kappa_{4}\sigma_{0}^{6}}{\hbar\omega} \frac{12(1+z)^{2}}{(1-z)^{2}} - \frac{\kappa_{4}\sigma_{0}^{6}}{k_{B}T} \frac{24z(1+z)}{(1-z)^{3}}$$

$$C_{2}^{(2)} = \frac{\kappa_{3}^{2}\sigma_{0}^{8}}{(\hbar\omega)^{2}} \frac{4(13z^{2}+58z+13)}{(1-z)^{2}} + \frac{\kappa_{3}^{2}\sigma_{0}^{8}}{(\hbar\omega)(k_{B}T)} \frac{24z(1+z)}{(1-z)^{3}}$$

$$C_{3} \cong C_{3}^{(1)} = \frac{\kappa_{3} \sigma_{0}^{6}}{\hbar \omega} \frac{4(z^{2} + 10z + 1)}{(1 - z)^{2}}$$
(13)

$$C_4 \cong C_4^{(1)} + C_4^{(2)} \tag{14}$$

$$C_{4}^{(1)} = -\frac{\kappa_{4}\sigma_{0}^{8}}{\hbar\omega} \frac{12(z^{3}+9z^{2}+9z+1)^{2}}{(1-z)^{3}} \\ -\frac{\kappa_{4}\sigma_{0}^{8}}{k_{B}T} \frac{144z^{2}}{(1-z)^{3}} \\ C_{4}^{(2)} = \frac{\kappa_{3}^{2}\sigma_{0}^{10}}{(\hbar\omega)^{2}} \frac{12(5z^{3}+109z^{2}+109z+5)}{(1-z)^{3}} \\ +\frac{\kappa_{3}^{2}\sigma_{0}^{10}}{(\hbar\omega)(k_{B}T)} \frac{720z^{2}}{(1-z)^{4}}$$

などが得られる。ただし、R, C_3 に関しては一次摂動にと どめてある。 $C_2 や C_4$ の一次摂動項はいずれも負で、二次 摂動項が正となる。注意したいのは、これらの一次二次摂 動項が同じオーダーの大きさであるということである。

多次元系ではこれらの計算は極めて複雑になる。一次摂動においては最終的な表式は比較的簡単ではあるが,数値計算は 3N 次元の m 次のキュムラントの演算において

(3N)^{m+1} 倍も大変になり現実的ではない。現状では100 原子程度のクラスターを一次摂動の範囲で3次キュムラ ントまで数値計算するくらいが妥当な程度だと思う。

4. 経路積分有効古典ポテンシャル法

ここでは多次元系の経路積分有効古典ポテンシャル (PI-ECP) 法の概略を示す。より詳細は文献20,22,23) を参照されたい。Feynman の経路積分理論によると密度 行列 $\rho(X)$ (Xは 3N次元の実空間直交座標)は

$$\rho(\mathbf{X}) = \frac{1}{Z} \langle \mathbf{X} | e^{-\beta H} | \mathbf{X} \rangle$$
$$= \frac{1}{Z} \int_{(\mathbf{X}, 0) \Rightarrow (\mathbf{X}, \hbar\beta)} \mathscr{G}[\mathbf{X}(\mathbf{u})] e^{-A[\mathbf{X}(\mathbf{u})]/\hbar} \quad (15)$$

のような汎関数積分の形で表現される。A[X(u)]は Euclidean action と呼ばれるもので,

$$A[\mathbf{X}(u)] = \int_{0}^{\beta\hbar} du \left[\frac{1}{2} \, {}^{t} \dot{\mathbf{X}}(u) \mathbf{M} \dot{\mathbf{X}}(u) + V[\mathbf{X}(u)]\right] \quad (16)$$

ある。但し, M は質量を表す対角行列である。この汎関 数積分は自由粒子や調和振動子を除いてもちろんほとんど 解けない。PI-ECP 法はこれを変分的に解くもので, Euclidean action に試行関数 $A_0[X(u)]$ を充てる。調和振動 子が良好な試行関数であることは自明であるから,

$$A_{0}[\boldsymbol{X}(\boldsymbol{u})] = \int_{0}^{\beta\hbar} d\boldsymbol{u} \left[\frac{1}{2} \, {}^{t} \dot{\boldsymbol{X}} \boldsymbol{M} \dot{\boldsymbol{X}} + \boldsymbol{w}(\boldsymbol{\bar{X}}) \right. \\ \left. + \frac{1}{2} \, {}^{t} (\boldsymbol{X} - \boldsymbol{\bar{X}}) \boldsymbol{F}(\boldsymbol{X} - \boldsymbol{\bar{X}}) \right]$$
(17)

と置く。ここで

$$\bar{X} = \frac{1}{\hbar\beta} \int_{0}^{\hbar\beta} du X(u)$$
(18)

は平均の経路を示し、力の定数Fとスカラーポテンシャ ルwは変分パラメータである。直交座標Xは線形変換 $Q={}^{t}UM^{1/2}(X-\bar{X})$ により基準座標Qに変換される。た だしUは行列 $M^{-1/2}FM^{-1/2}$ の固有ベクトルである。ゆ えに、

$$A_0[\boldsymbol{X}(\boldsymbol{u})] = \int_0^{\beta\hbar} d\boldsymbol{u} \left[\frac{1}{2} \, {}^t \dot{\boldsymbol{Q}} \dot{\boldsymbol{Q}} + \frac{1}{2} \, {}^t \boldsymbol{Q} \omega^2 \boldsymbol{Q} + w(\bar{\boldsymbol{X}}) \right] \quad (19)$$

調和振動子の密度行列 $ho_0(X)$ は正解が得られており、

$$\rho_0(\bar{X}) = \frac{e^{-\beta w(\bar{X})}}{\det M^{-1/2}} \prod_k \frac{1}{\sqrt{2\pi\hbar^2\beta}} \frac{f_k}{\sinh f_k} \frac{1}{\sqrt{2\pi\alpha_k}} \\ \times \int_{-\infty}^{\infty} dQ_k e^{-(Q_k - \bar{Q}_k)^2/2\alpha_k}$$
(20)

で与えられる。但し,

$$\alpha_k = \frac{\hbar}{2\omega_k} \left(\coth f_k - \frac{1}{f_k} \right), \quad f_k = \frac{\beta \hbar \omega_k}{2}$$
(21)

であり、 α_k は波数kのフォノンに関する量子論的揺らぎ と古典論的揺らぎの差である。任意の物理量Mの熱平均 $\langle M \rangle_0$ は

$$\langle M \rangle_0 = \frac{1}{Z_0} \int d\bar{\boldsymbol{X}} \rho_0(\bar{\boldsymbol{X}}) M(\bar{\boldsymbol{X}})$$

$$= \frac{1}{Z_0} \frac{1}{\det \boldsymbol{M}^{-1/2}} \frac{1}{(2\pi\hbar^2\beta)^{3N/2}}$$

$$\times \int d\bar{\boldsymbol{X}} e^{-\beta V_{\text{eff}}(\bar{\boldsymbol{X}})} \langle\!\langle M(\bar{\boldsymbol{X}} + \boldsymbol{M}^{1/2} \boldsymbol{U} \boldsymbol{Q}) \rangle\!\rangle$$

$$(22)$$

で計算できる。《 》は量子揺らぎに関する 3N 次元の積分 平均をとることを示す。 $V_{eff}(\bar{X})$ はいわゆる有効古典ポテ ンシャル

$$V_{eff}(\bar{X}) = w(\bar{X}) + \frac{1}{\beta} \sum_{k} \ln \frac{\sinh f_k}{f_k}$$
(23)

である。高温極限で、 α_k は0であり、 $V_{eff}(\bar{X})$ は古典的 ポテンシャルと一致する。

最適化は Jensen-Feynman 不等式

$$F \leq F_0 + \frac{1}{\beta\hbar} \langle A - A_0 \rangle_0 \tag{24}$$

により行われる。ここで, *F*, *F*₀はそれぞれ真の自由エネ ルギー及び試行関数による自由エネルギーである。結果的 な変分条件は

$$\langle\!\langle V(\bar{\boldsymbol{X}} + \boldsymbol{M}^{1/2}\boldsymbol{U}\boldsymbol{Q}\rangle\!\rangle = w(\bar{\boldsymbol{X}}) + \frac{1}{2}\sum_{k}\omega_{k}^{2}(\bar{\boldsymbol{X}})\alpha_{k}(\bar{\boldsymbol{X}}) \quad (25)$$

$$\langle\!\langle \nabla \nabla V(\bar{\boldsymbol{X}} + \boldsymbol{M}^{1/2} \boldsymbol{U} \boldsymbol{Q}) \rangle\!\rangle = \frac{\partial^2}{\partial X_i \partial X_j} V(\bar{\boldsymbol{X}})$$
 (26)

となる。式(20)の $\rho_0(X)$ を用いて EXAFS のキュムラントが計算できる。

しかしながら,多次元系では(20),(25),(26)式の積分 がすべて 3N 次元となってしまい,摂動法と同様にこのま までは数値計算が絶望的である。ここで low coupling approximation を導入する。これは $w や \omega^2$ が \bar{X} に依らない と仮定するものである。簡単のため単原子 Bravais 格子 (原子質量m, 原子数N)を考える。3×3力学的行列Dは

$$\boldsymbol{D} = \sum_{j} \boldsymbol{F}_{oj} \exp\left[i\boldsymbol{k} \cdot \boldsymbol{R}_{oj}\right]$$
(27)

と書ける。但し、 F_{oj} は原子o, jに関するFo3×3 成 $分、<math>R_{oj}$ は原子oを基準としたjの位置ベクトルである。 行列Dの固有値、固有ベクトルを $m\omega_{k\mu}^{2}, e_{k\mu}$ とする (μ = 1,2,3はフォノンの分枝を示す)。式(23)の $V_{eff}(\bar{X})$ を計 算するのに、さらに簡単のため二体ポテンシャルを仮定す る。このとき $V_{eff}(\bar{X})$ は

$$V_{eff}(\mathbf{X}) = \sum_{i \neq j} u(R_{ij}) + \sum_{i \neq j} \left\{ \left[u''(R_{ij}) - u''(R_{ij}^{0}) \right] \sigma_{ij}^{(2)L} + \left[\frac{u'(R_{ij})}{R_{ij}} - \frac{u'(R_{ij}^{0})}{R_{ij}^{0}} \right] \sigma_{ij}^{(2)T} \right\}$$
(28)

となる。ここで $u(R_{ij})$ は原子i, j間の距離 R_{ij} における二体ポテンシャル、 R_{ij}^{0} は平行原子間距離、 $\sigma_{ij}^{(2)L}, \sigma_{ij}^{(2)L}$ はそれぞれ α_k の縦横方向の射影で、

$$\sigma_{ij}^{(2)T} = \frac{2}{Nm} \sum_{k,\mu} (1 - \cos k \cdot R_{ij}^0) (\hat{R}_{ij}^0 \cdot e_{k\mu})^2 \alpha_{k\mu}$$
(29)

$$\sigma_{ij}^{(2)T} = \frac{2}{Nm} \sum_{k,\mu} \left(1 - \cos k \cdot R_{ij}^0 \right) \left(1 - (\hat{R}_{ij}^0 \cdot e_{k\mu})^2 \right) \alpha_{k\mu} \quad (30)$$

で表せる。 \hat{R}_{ij}^{0} は R_{ij}^{0} の単位ベクトルである。 $\sigma_{ij}^{(2)L}$ は EX-AFS の Debye-Waller 因子の量子論と古典論の差である。 式(28)の第一項は古典的ポテンシャルで,これに第2,3 項の量子論的補正が加わったのが有効古典ポテンシャルで ある。

全ポテンシャルエネルギーが二体ポテンシャルの和で記 述できる希ガス結晶などの場合は上式がそのまま使用でき る。一方,固体金属のポテンシャルとしては多体力が重要 で,embedded-atom method (EAM)がよく用いられる。 これは密度汎関数法の理論式に経験的パラメータを与える もので,系のポテンシャル Vを

$$V = \sum_{i} V_{i} = \sum_{i} \left[F_{i}(\rho_{h,i}) + \frac{1}{2} \sum_{j \neq i} \phi_{ij}(R_{ij}) \right]$$
(31)

のように書く。ここで $\rho_{h,i}$ は原子iの位置における原子i以外の host による電荷密度で,

$$\rho_{h,i} = \sum_{j \neq i} \rho_j^a(R_{ij}) \tag{32}$$

と書ける。但し、 ρ_i^a は原子iの位置における原子jの電荷

密度である。 F_i は自由電子的価電子とイオンコアの多体 引力で、一般には汎関数であるが局所密度近似(local density approximation, LDA)により単なる関数に置き換え られる。 ϕ_{ij} は近距離に働くイオンコア間の二体反発力で ある。

このままでは先の式(28)などを用いることができない が、EAM のポテンシャルは多体力ではあるものの変角な ど角度依存成分を含まない。 $V_{eff}(\bar{X})$ の計算には調和近似 で十分であるが、いま Vを単純に Taylor 展開すると

$$V \cong N[F(\bar{\rho}) - \bar{\rho}F'(\bar{\rho})] + \frac{1}{2} \sum_{i \neq j} u(R_{ij})$$
(33)

となる。ここで、 $\bar{\rho}$ は ρ の平均、 $u(R_{ij})$ は

$$u(R) = \phi(R) + 2F'(\bar{\rho})\rho_a(R) + F''(\rho)[\bar{\rho}^a(R)]^2 \qquad (34)$$

は二体ポテンシャルである。つまり調和近似の範囲では多 体力が入らず,結局,式(28)などがそのまま使用でき, (28)の第一項(古典的ポテンシャル)を式(31)で置き換 えればよい。これは非常に重要な帰結である。

5. 摂動展開法の応用例

1 次摂動展開法の応用例として固体 Kr の EXAFS キュ ムラントを計算し実験データと比較した¹⁷⁾。Kr の熱振動 は二体ポテンシャルでよく記述できることが知られてお り,ここでも Barker ら²⁶⁾の経験的な二体ポテンシャルを 4 次の Taylor 展開を行った表式を利用した。固体の計算 が困難であったため fcc Kr を仮定したクラスター近似 (Kr₂, Kr₁₃, Kr₁₉, Kr₄₃, Kr₅₅, Kr₇₉, Kr₈₇)で計算を行った。 EXAFS キュムラントの表式は原著¹⁷⁾に示してある。ま た,比較のため古典論において 3 次元固体のモンテカル ロ (MC)計算も行った。クラスター近似では表面の影響 が大きいので、中心の Kr 原子から見た第一配位圏のみを 議論する。

Figure 1に固体 Kr の EXAFS の実験データを示した。 測定は物質構造科学研究所放射光研究施設(KEK-PF) のビームライン10B において透過法で行ったものである。 測定温度領域は24-43 K,真空中で行った(Kr は45 K で 昇華した)。(a)が EXAFS 関数 $k^3\chi(k)$,(b)がそのフーリ 工変換,(c)が第一配位圏の逆フーリエ変換である。高配 位圏まで美しく観測できている。(c)では温度上昇ととも に振幅が減衰し,位相も高波数側でずれていることがわか る。このことはそれぞれ C_2 , C_3 が増大したことを示して いる。(c)から直ちに R_{av} , C_2 , C_3 が決定できる。

Figure 2 に第一配位 Kr-Kr 間の平均原子間距離 R_{av} , 平均自乗相対変位 C_2 , 平均三乗相対変位 C_3 の温度変化を 示した。**Figure 1**(c)より得た固体 Kr の EXAFS の実験 値の他, X 線回折のデータ (R_{av} のみ), 各クラスターに

Figure 1. (a) Kr K-edge EXAFS oscillation function $k^3\chi(k)$ of solid Kr at 24, 25, 29, 35, 38 and 43 K; (b) Fourier transforms of (a) using the Fourier range of $\Delta k_{\rm FT}=3.2-10.4$ Å⁻¹; (c) filtered $k^3\chi(k)$ for the first-nearest neighbor shell using the Fourier ranges of $\Delta k_{\rm FT}=3.2-10.4$ Å⁻¹ and $\Delta R=2.9-4.2$ Å.

対する摂動計算の結果,固体の古典的 MC 計算の結果を 与えてある。摂動計算の結果は、クラスターが大きくなる のつれて小さくなり、Kr55 あたりでほぼ収束し実験値に 近づいている。古典論では、 C_2 に関して調和的零点振動 の影響で値が小さく求められている他、 C_3 に関しても摂 動計算の値より小さめとなっている。前者はよく知られた ことだが、後者は非調和振動に対する量子効果の現れとし て注目すべきである。原子間距離に関しても同じことが観 測されている。即ち、古典論では熱膨張率は一定である (Fig. 2(a)の MC による R_{av} が温度に関して直線的に増加 している)が、量子論では低温ほど熱膨張率は減少してい る。特に Kr の場合は非調和性が大きいので、0 K におけ る原子間距離が古典論では量子論に比べて0.01 Å も短く なってしまうことに注意すべきである。

6. 摂動展開法と経路積分法の比較

2 次摂動展開と PI-ECP 法を比較するため,気体二原子 分子 Br₂ の計算を行った¹⁸⁾。ポテンシャルは振動分光に

Figure 2. Temperature dependence of (a) the average interatomic distances R_{av} , (b) mean-square relative displacements C_2 and (c) mean-cubic relative displacements C_3 for the first-nearest neighbor Kr-Kr shell estimated by the quantum-statistical calculations of the Kr₂, Kr₁₃, Kr₁₉, Kr₄₃, Kr₅₅, Kr₇₉ and Kr₈₇ clusters (short-dashed lines). The results of the classical Monte-Carlo (MC) simulations of solid Kr (long-dashed line) are also given, together with the EX-AFS results (filled squares with error bars) and the x-ray diffraction data (solid line) for R_{av} . The results of R_{av} and C_3 for Kr₇₉ are omitted because these are almost identical with those of Kr₈₇.

より精密に決定されており,式(9)の力の定数 $\kappa_0, \kappa_3, \kappa_4$ がそのまま文献27)に与えられている。EXAFS キュムラ ントの摂動計算は式(12–14)を用いて行い, PI–ECP 計算 は式(22, 23, 25, 26)などに依った。1 次元なので当然では あるが low coupling 近似を導入する必要はなく, PI– ECP 法の範囲で非調和量子論の取り扱いがなされること になる。

Figure 3 に気体 Br₂の Br-Br 間の C₂, C₃, C₄の温度変 化を示した。EXAFSの実験データの他, PI-ECP 法 (EP), 1 次摂動(P1), 2 次摂動(P2), 調和近似(HA, C₂のみ), 古典論(classic)の計算結果を示した。実験デ ータのある300 K 以上の高温領域では PI-ECP 法が最も 実験と合致しているといえる。C₂, C₄の1次摂動項は式 (12, 14)よりいずれも負になる(特に C₄ に関しては絶対

Figure 3. Temperature dependence of C_2 , C_3 and C_4 of Br₂ evaluated by the path-integral effective classical potential method (solid line; EP), and the first-order perturbation (dotted line; P1 for C_2 , C_3 and C_4) and second-order perturbation (short-dashed line; P2 for C_2 and C_4) methods, together with the experimental data (filled squares with error bars). For C_2 the harmonic approximation (dot-dashed line; HA) are also given.

値も負となる)ため、2次までの導入が不可欠であること がわかる。C₃に関しても1次摂動の結果では高温領域に おいて実験値やPI-ECP法の結果より値が小さくなって いる。これはより高次の摂動計算が必要であることを意味 する。

一方,実験データのない低温側では PI-ECP 法よりも 摂動法が妥当になる。 C_2 , C_4 では差が見えないが, C_3 に 関しては100 K 以下で PI-ECP 法は曲線が上に凸に転じ 0 に漸近するが,摂動法では緩やかに下に凸のまま 0 K で も有限値をとる。これは固体 Kr でも見たように低温での 非調和振動の量子効果であり,低温で調和近似に漸近する PI-ECP 法は適切ではない。古典論は C_3 に関して PI-ECP 法よりも高温の200 K あたりで摂動法からはずれる ので,PI-ECP 法が非調和振動の量子効果を全く考慮して いないというものではない。 C_4 に関しては古典論と PI-ECP 法は完全に一致し,量子効果は重要でなく,むしろ 摂動法は高次の項が要求される結果である。

一般に分子は固体に比べて振動数が高いため量子効果が 大きい。このような場合でも PI-ECP 法はかなりの広い 温度領域で有効であることがわかった。実験値と計算値の 一致が非常によいので, EXAFS から定量的に力の定数 κ₀, κ₃, κ₄ が決定できることを意味する結果である。

7. 経路積分法の応用例

最後に PI-ECP 法の固体への応用例として fcc Ni の結 果を示す。計算は先に述べた理論に基づいて行った。今度 は多次元系であるので low coupling 近似を導入した。ポ テンシャルは経験的な EAM を利用した²⁵⁾。計算の詳細 やその他の計算結果(固体 Kr, fcc Cu)は原著^{20,21)}を参照 されたい。

Figure 4に*fcc* Ni の40 K と300 K における Ni 原子周 りの動径分布関数を示す。300 K では古典論と量子論の結 果がそれほど異ならないが、40 K では量子論の結果が幅 広になる。これは調和的量子効果(零点振動)によるもの である。**Figure 5**に第1配位と第3配位の C_2 , **Fig. 6**に 第1配位と第3配位の C_3 の計算結果を実験値とともに示 した。第1,3配位の C_2 および第1配位 C_3 のいずれも実 験値を定量的によく再現している。第3配位の C_3 は実験 データがないがほぼ0 であり、計算でも第1配位よりか なり小さくなっている点で定性的な再現は良好である。

第3配位の方が第1配位と比べて C_2 は大きくなってい るのに C_3 は小さくなっていることに注意すべきである。 第3配位は化学結合がないので分布が幅広になり C_2 が増 大することは極めて自然である。一般に化学結合のある二 原子対の相関は C_2 が大きければ C_3 も大きい(柔らかい 結合ほど非調和性も大きい)が、今回の結果およびこれま で筆者が解析したfcc単原子結晶すべてにおいてこれとは 逆の傾向があてはまる。この理由もある意味では当然なの であるが、第3配位には相関がなく、相関のない二対の 分布は中心極限定理により分布は Gauss 型になることに 相当している。

Figure 4. Radial distribution functions of surrounding Ni atoms in fcc Ni at 40 and 300 K, evaluated by the path-integral effective classical potential method (solid line) and the classical Monte-Carlo simulation (dashed line).

Figure 5. Temperature dependence of C_2 of the first- and thirdnearest neighbor Ni-Ni shells of solid Ni. Experimental data are given as filled squares with error bars, together with those by the path-integral effective classical potential method (solid line; \times) and the classical Monte-Carlo method (dashed line; +).

Figure 6. Temperature dependence of C_3 of the first- and thirdnearest neighbor Ni–Ni shells of solid Ni. Experimental data are given as filled squares with error bars (for the first neighbor only), together with those by the path-integral effective classical potential method (solid line; \times).

今回の計算は PI-ECP 法(というよりもっと一般的に 経路積分法)を用いてはじめて金属の熱的性質を検討し, また,固体における EXAFS のキュムラントを計算した というデモンストレーション的要素が強いが,摂動法では どうにも進展し難い固体や固体表面の非調和振動を比較的 簡便に量子論的に取り扱える方向性が見えてきた点で有意 義であったと思っている。

8. 最後に

EXAFS における熱振動の取り扱いを理論的な立場から その歴史を踏まえて筆者らの研究を概説させていただい た。筆者らの研究はもちろん歴史に関しても多々独りよが りがあるかもしれないのでこの点はご指摘いただきたい。

EXAFSで観測される物理量に限らず,分子や固体の振動を理解しようとすると,結局のところ2種類の近似が どの程度妥当かという問題に行き着く。つまり,量子効果 と非調和性がどの程度無視できるかである。高温の融解な どの現象を扱いたい場合は量子効果を捨てても大抵の場合 (おそらく He を除くすべて)何の問題もなかろう。逆に 非調和を捨てると当然のことながら融解は起きないので大 問題となる。一方,低温では量子効果を決して無視するこ とはできない。ここでは量子効果を決して無視するこ とはできない。ここでは量子効果を決して無視するこ とはできない。ここでは量子効果と非調和性が双方とも重 要である場合どのように導入していくかを述べたかった。 特に EXAFS は,温度が低くも高くもない領域で測定す ることが多いため,いずれも重要な問題として認識されて おり,理論の精度信頼性の向上に避けては通れないところ かと思う。

摂動法と経路積分有効古典ポテンシャル(PI-ECP)法 について比較検討した。摂動法は解析的な表式が得られる 点で美しいが現実の固体には適用しにくい。PI-ECP法は かなり大胆な近似を導入するものの EXAFS にはおおむ ね十分である。むしろ実験サイドからすればもう少し簡単 な理論が好まれる。例えば Einstein モデルや Debye モデ ルである。しかしながら Einstein モデルは化学結合のな い高配位には適用できないし, Debye モデルは単原子 Bravais 格子以外(光学フォノンのある系)にはあてはめ にくい。このあたりのより簡便な立式が実験サイドの今後 の課題かもしれない。PI-ECP 法も今の表式では単原子 Bravais 格子以外適用できないので若干の導出を行った上 で表面振動などに応用していきたい。

謝辞

ここで紹介した研究は東京大学大学院理学系研究科化学 専攻の太田研究室で行ったものである。共同研究者は太田 俊明教授,小林かおり博士,与名本欣樹氏,佐藤仁博士, 鵜川彰人博士であった。また,多くの方にご教示いただい た。特に,藤川高志教授(千葉大),H.Kleinert 教授, A. Pelster 博士,K. Baberschke 教授(いずれも Berlin 自由大)には摂動法・経路積分法とも多大にお世話になっ た。以上の方々にこの場でお礼申し上げたい。

参考文献

- D. E. Sayers, E. A. Stern and F. W. Lytle: Phys. Rev. Lett. 27, 1204 (1971).
- 2) G. Beni and P. M. Platzman: Phys. Rev. B14, 1514 (1976).
- J. J. Boland and J. D. Baldeschwieler: J. Chem. Phys. 80, 3005 (1984); *ibid.* 81, 1145 (1984).
- T. Yokoyama, N. Kosugi, K. Asakura, Y. Iwasawa and H. Kuroda: J. Phys. (Paris) 47, C8-273 (1986).
- P. Eisenberger and G. S. Brown: Solid State Commun. 29, 481 (1979).
- G. Bunker: Nucl. Instrum. Methods Phys. Res. 207, 437 (1983).

- T. Yokoyama, T. Satsukawa and T. Ohta: Jpn. J. Appl. Phys. 28, 1905 (1989).
- H. Rabus: Ph.D. thesis, Department of Physics, Freie Universitat Berlin, 1991.
- 9) A. I. Frenkel and J. J. Rehr: Phys. Rev. B48, 585 (1993).
- 10) T. Fujikawa and T. Miyanaga: J. Phys. Soc. Jpn. 62, 4108 (1993).
- T. Miyanaga and T. Fujikawa: J. Phys. Sco. Jpn. 63, 1036 (1994).
- 12) T. Yokoyama, K. Kobayashi, T. Ohta and A. Ugawa: Phys. Rev. B53, 6111 (1996).
- T. Yokoyama and T. Ohta: J. Phys. Soc. Jpn. 65, 3909 (1996).
- T. Yokoyama, Y. Yonamoto, T. Ohta and A. Ugawa: Phys. Rev. B54, 6921 (1996).
- T. Yokoyama, Y. Yonamoto, K. Kobayshi and T. Ohta: J. Phys. (Paris) IV 7, C2–125 (1997).
- T. Yokoyama, Y. Yonamoto and T. Ohta: J. Phys. Soc. Jpn. 65, 3901 (1996).
- 17) T. Yokoyama, T. Ohta and H. Sato: Phys. Rev. B55, 11320 (1997).

- 18) T. Yokoyama: J. Synchrotron Radiat. 6, 323 (1999).
- T. Fujikawa, T. Miyanaga and T. Suzuki: J. Phys. Soc. Jpn. 66, 2897 (1997).
- 20) T. Yokoyama: Phys. Rev. B57, 3423 (1998).
- 21) T. Yokoyama: Path Integral from peV to TeV: 50 Years after Feynman's Paper, eds. R. Casalbuoni, R. Giachetti, V. Tognetti, R. Vaia and P. Verrucchi (World Scientific, Singapore, 1999) p. 474.
- A.Cuccoli, R. Giachetti, V. Tognetti, R. Vaia and P. Verrucchi: J. Phys. Condens. Matter 7, 7891 (1995).
- H. Kleinert: Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (World Scientific, Singapore, 1995).
- 24) M. S. Daw and M. I. Baskes: Phys. Rev. B29, 6443 (1984).
- 25) S. M. Foiles, M. I. Baskes and M. S. Daw: Phys. Rev. B33, 7983 (1986).
- 26) J. A. Barker, R. O. Watts, J. K. Lee, T. P. Schafer and Y. T. Lee: J. Chem. Phys. 61, 3081 (1974).
- 27) K. P. Huber and G. Herzberg: Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (Van Nostrand Reinhold, New York).

きいわーど

非調和振動

分子や固体の振動は概ね低温では調和振動近似(原子間ボ テンシャルを放物線で近似するもの)が十分であるが、温度 が上昇するにつれて非調和性を考慮する必要が増してくる。 非調和性は弾性定数の温度依存や熱膨張率といった固体の基 礎的な性質の起源となる重要な事項である。また、より高温 で生じる融解はそもそも非調和性がドライビングフォースと なっている。固体の非調和性を実験的に調べる手段としては 中性子の非弾性散乱が一般的であるが、EXAFSも結晶性固 体に限らず適用可能であるため有効である。

EXAFS のキュムラント

EXAFS は X 線吸収原子と周囲の散乱原子の動径分布関 数を反映するものである。より具体的には、本文式(3)(4) で示したように、キュムラント展開した形で与えられる。2 次3次のキュムラントは動径分布関数のモーメントに等し く、一般に n 次のキュムラントは n 次までのモーメントを 用いて表すことができる。動径分布関数がガウス型の場合 3 次以降のキュムラントはすべて 0 となり、2 次のキュムラ ントは分布の分散となる。非調和性の度合いが大きいと高次 の展開項まで必要となり実用的でないが、EXAFS が通常適 用される温度領域においては広く一般的な表式(4次程度ま で)となっている。キュムラントは非調和性を示す重要な指 標である。

経路積分法

Schrödinger の量子力学ではエネルギー・波数を基準とし た固有状態を基底とした描像を利用するが、時間や温度に依 存する性質を議論したい場合必ずしも明快な記述ではない。 固体の振動を EXAFS で見る場合は明らかに波数空間より 実空間上の方が理解しやすい。Feynman の経路積分理論は、 先人が古典論で行ってきた実空間描像に基づいて、時間や温 度発展を量子力学的に記述しようとする。温度発展の場合、 初期状態として温度無限大を仮定し(すなわち実空間におけ る存在確率は均一)、そこから目的の温度まで冷却したとき 各状態の存在確率を、全経路にわたってその発展確率の足し 合わせにより求めるものである。一般的な経路積分モンテカ ルロ計算を現在のスーパーコンピュータで実行するのはまだ まだ限界があるが、有効ポテンシャル法のような簡便な近似 が適用可能な場合はパソコンでも十分精度の高い結果が得ら れる。