トピックス

豊川 弘之,大垣 英明 電子技術総合研究所量子放射部*

Development and Application of Energy-Tunable Photon Beam Generated by Laser-Compton Backscattering

Hiroyuki TOYOKAWA and Hideaki OHGAKI

Quantum Radiation Division, Electrotechnical Laboratory

An energy-tunable photon beam has been generated by Compton backscattering of laser light for the establishment of the standard field of high-energy gamma-rays, for the nuclear physics research and for the beam diagnostic of the electron beam circulating in the storage ring. The energy of the photons are from 1 to 40 MeV by using several laser systems and the storage ring TERAS. Characteristics of the Laser-Compton gamma-ray beam are briefly described on the principle, and applications of the photons are described with the experimental methods.

1. まえがき

エネルギーを自由に変えられる放射線源は、加速器の誕 生とともに我々の手の届くところとなった。電子線やイオ ンビームは加速器からの1次ビームとして,近年ではマ イクロビーム化や、極超短パルス化されたものまで発生さ せることが可能である。これに対し,γ線は加速器からの 2次ビームとして得られる.X線管を代表とするタイプの X,y線は、加速された荷電粒子からの制動放射を利用す るもので、高強度かつ白色のエネルギースペクトルを有す るという特徴を持つ。この方法では、1次粒子である、荷 電粒子のエネルギー損失を磁気分析器等で測定することに より, y線のエネルギーを同定することも可能である。一 方, 単色 γ線に関しては, 比較的低エネルギー領域におい ては,放射性同位元素からの y 線を, コンプトン散乱のエ ネルギーと散乱角依存性を利用してエネルギー可変性を持 たせたものや、様々な核反応からのy線を利用するものな ど, 色々な線源が開発されてきた。この中でレーザー逆コ ンプトン散乱を利用した γ線源が,近年その単色性や高偏 極性等の観点から注目を集め始めている。レーザー逆コン

プトン散乱を利用したy線源は、構想自体は古く1940年 代に遡る。通常のコンプトン散乱では、静止した電子にγ 線が衝突して散乱し, y線のエネルギーを電子が受け取る とともに, y線自体のエネルギーも減少する。それではも し電子が運動をしていたら、その運動が相対論的であった ら? このことを理論的に取り扱ったのが Feenberg と Primakoff¹⁾であり、ついで加速器の電子ビームに応用し て考案されたのが、レーザー逆コンプトン散乱を利用した y線源である。これは、1963年に Milburn²⁾や Arutynian と Tumanian³⁾が提案し、1964年に Lebedev の600 MeV シンクロトロンとルビーレーザーを用いて、y線の発生を みている⁴⁾。以降,各所でレーザー逆コンプトン散乱を用 いた y 線の発生技術の開発とそれを用いた応用研究が行わ れるようになった⁵⁻⁸⁾。電総研では蓄積リング TERAS の 稼動開始より, レーザー逆コンプトン散乱を利用した γ線 源の開発,及びこれを用いた電子ビーム診断や, y線検出 器の校正,核物理実験等への応用を進めてきた⁹⁾。本稿で は、電総研におけるレーザー逆コンプトン散乱を利用し た, エネルギー可変偏極 y 線源の開発とその利用を中心

* 電子技術総合研究所量子放射部 〒305-8568 つくば市梅園 1-1-4 TEL: 0298-61-5687 FAX: 0298-61-5683 E-mail: toyokawa@etl.go.jp 365

2. レーザー逆コンプトン散乱 y 線の基本特性

1963年,加速器からの相対論的粒子に,強力な光子ビームを正面衝突させ,高エネルギーy線を発生させるという発想が発表された^{2,3)}。この発想は通常のコンプトン散乱をローレンツ変換した結果得られるもので,それぞれの運動(Fig.1)をまとめると散乱光子のエネルギーは近似的に

$$E_{\gamma} = \frac{4\gamma^{2}\varepsilon_{L}}{1 + (\gamma\theta)^{2} + 4\gamma\varepsilon_{L}/(mc^{2})}$$
(1)

のように書ける。ここで $y=E_e/mc^2$, (E_e は電子の運動エ ネルギー, m は電子の静止質量, c は光の速度) θ は光子 の散乱角であり, また EL は入射光子のエネルギーである。 (1)式より散乱光子の最大エネルギーは $\theta=0^{\circ}$ で得られ, Nd:YAG レーザー (1064 nm) を800 MeV の電子に正面 衝突させる場合には11.3 MeV にも及ぶことが分かる。 (1)式より得られる,電子エネルギーに対する y線の最大 エネルギーを Fig. 2 に示す。ここではレーザー光源に2 種類のNd:YLF レーザー(527,263 nm)を用いた場合 を仮定して、計算を行っている。この図からも明らかなよ うに、レーザー逆コンプトン散乱 y 線は蓄積電子のエネル ギーの二乗に比例して変化し、連続的に最大エネルギーを 変化させることができる。またレーザーの波長に反比例し たエネルギーを有することが分かる。一般的に言って、レ ーザーの波長を連続的に変化させるより、電子ビームのエ ネルギーを変化させる方が容易であり、エネルギー可変の y線を得るには,通常後者の方法を用いる。当所の場合, 細かいエネルギーの調整には電子ビームのエネルギーを変 化させ、大きなエネルギーの変化には、レーザーの波長を 変化させている。ただし、電子ビームのエネルギーを変化 させる場合には,電子ビームの品質,位置, y 値等が変化 することは避けられない。また、レーザーの波長を変化さ せる場合,現在レーザーの波長変換素子を用いているの で,連続発振(CW)モードは基本波のみで,2倍波等に

Figure 1. A schematic drawing of the laser-Compton backscattering.

おいてはパルス発振モードのみ使用可能である。更に(1) 式から,散乱光子は散乱角θに対してエネルギー分布を持 っことが分かり,エネルギーを変化させる別の方法とし て,散乱角を利用することも可能である。y線の単色化に は,実はこの散乱角に対するエネルギー依存性を利用す る。即ち,散乱角をコリメータ等で制限することにより, 散乱 y線の低エネルキー部分を落として,単色性の高い y 線ビームを得ることができる。ここで散乱角0度を中心 にコリメータで半角を θ_cに切った時の y線のエネルギー 広がりは

$$\Delta E/E \cong \left\{ \left(\frac{2\Delta E_e}{E_e} \right)^2 + (\gamma \Delta \theta)^4 \right\}^{1/2}$$
$$\Delta \theta = (\theta_e^2 + \theta_c^2)^{1/2} \tag{2}$$

と書ける。ここで $\Delta E_e/E_e$ は電子ビームのエネルギー広がり、 θ_e は電子ビームの発散角である。

蓄積リングを周回する電子ビームの品質は非常に高く, 電総研蓄積リング TERAS では,エネルギー広がりに関 しては0.2%,ビームの発散角0.1 mrad という値が蓄積リ ングのラティス計算より導出される。これらの値より,散 乱ビームのコリメータを0.1 mrad で切る場合,300 MeV の電子エネルギーに対し,0.8%(の)のエネルギー広がり のレーザー逆コンプトン散乱 y線が得られることが分か る。

コンプトン散乱の散乱断面積は Klein-Nishina の式をも とに計算することができるが, 逆コンプトン散乱の場合も まったく同じ式を用いて, 散乱光子のエネルギーに対する 断面積を知ることができる。以下に式を示す。

$$\frac{d\sigma}{d\Omega} = \frac{4r_0^2 \gamma^2}{(1+n^2+2z)^2} \left[\frac{2}{1+n^2} \left(\frac{z^2}{1+n^2+2z^2} - \frac{n^2}{1+n^2} \right) + 1 \right]$$

$$n = \gamma \theta$$

$$z = 2\omega \gamma / m$$
(3)

Figure 2. Differential cross-section of the Compton-scattered photons as a function of the scattered-photon energy calculated for a Nd:YAG laser collided head-on with a 750 MeV electron.

ここで、 ω は入射レーザーのエネルギーであり、 r_0 , mは それぞれ電子の古典半径及び静止質量である。電子エネル ギー750 MeV,入射レーザーの波長1064 nm (Nd:YAG レーザーの基本波)として(2)式を用いてエネルギー微分 断面積を計算した結果を**Fig.3**に示す。

γ線の収量は、電子ビーム、レーザービーム双方とも、 パルス状で、かつ、ガウス分布を仮定した場合、近似式

$$Y = 2N_e N_L \sigma L / (A\tau c) \tag{4}$$

によって表すことができる。ここで N_e , N_L はそれぞれバ ルス当たりの電子,レーザー光子の個数であり, σ はコリ メータの角度で積分された断面積,L は衝突領域の有効長, A はビーム断面積の大きな方, τ はビームパルスの長い方 である。

レーザー逆コンプトン散乱 y 線に関する更に重要な性質 として, 偏光を取り入れた Klein-Nishina の式から引き出 される結果としての高偏極性が挙げられる。これはコンプ トン最後方散乱を用いる場合には, 散乱光子は入射レーザ 一光の偏光性をほぼ完全に保存することであり, 100%直 線偏光レーザー光を用いることにより, ほぼ100%直線偏 極した y 線が得られる。また偏光特性も自在に制御するこ

Figure 3. Maximum photon energy as a function of the electron energy, calculated for the 2nd- and 4th-harmonic lights of Nd:YAG laser.

とができる。更に円偏光した y 線も容易に得ることができ る。これまで得られた偏極 y 線は RI によるそれ以外に は、off-axis の制動輻射によるものであった。この偏極 y 線は偏極度が30%程度と非常に低く、また、エネルキー によっても偏極度が変わるといったものであった。これに 対してレーザー逆コンプトン散乱 y 線は、エネルギーによ らずにほぼ完全な偏極度を有するという優れた特性を持 つ。エネルギー広がり ΔE を有する逆コンプトン散乱 y 線 の偏極度 P は

$$P=1-\varDelta E^2 \tag{5}$$

と近似できる。(5)式より,10%のエネルギー広がりを有 するレーザー逆コンプトン散乱 y 線は,99% という高偏 極度を保持することが分かる。

3. レーザー逆コンプトン散乱 y 線の特性測定

レーザー逆コンプトン散乱 y 線の最大エネルギーを,電 子エネルギー及びレーザーの波長を変化させて測定を行っ た。電子ビームには、電総研共用電子蓄積リング TERAS を周回する電子ビームを、レーザーには Quantronix 社製 Nd:YLF レーザーを用いた。蓄積リング TERAS は200 MeV から800 MeV まで蓄積電子のエネルギーを変化させ ることが可能であり、最大蓄積電流300 mAの運転が可能 である。レーザーは第2高調波(527 nm)と第4高調波 (263 nm)の発生が可能である。**Table 1**に, 蓄積リング 及びレーザーの基本パラメータを示す。測定には相対効率 120%の大型高純度 Ge 検出器を用いて、y 線のエネルギ ー測定を行った。Figure 4 にレーザー逆コンプトン散乱 y線の発生部,及びエネルギー測定装置の配置図を示す。 レーザー光学系は誘電体多層膜ミラーでレーザーを蓄積リ ングに導入し,電子とレーザーの衝突点で焦点を結ぶよう にレンズを配置している。レーザー逆コンプトン散乱 γ線 の最大エネルギーを,電子エネルギー及びレーザーの波長 を変化させて測定を行った結果を,Fig.5に示す。(1)式 から得られた計算値を図中に実線で示す。

レーザー逆コンプトン散乱 γ線のエネルギースペクトル

Figure 4. A schematic drawing of the ETL laser-Compton photon fasility.

Table	1.
	~ •

TERAS						
Min. energy (MeV)	Max. energy (MeV)	Max storage (mA)	Emittance (nm rad)	Circumference (m)		
200	800	300	89.2 (300 MeV)	31.45		

Lasers						
Quantronix Nd:YLF	Quantronix Nd: YLF	Quantronix Nd:YLF	Quantronix Nd:YLF			
1054 nm	527 nm	351 nm	264 nm			
CW, 2 – 10 kHz	2 – 10 kHz	2 – 10 kHz	2 – 10 kHz			
30 W	15 W	3 W	800 mW			

Figure 5. Highest energy of the laser-Compton photons.

を,高純度 Ge 検出器に BGO 検出器のアンチコンプトン シールドを施した,高エネルギー高分解能スペクトロメー タを用いて測定した。結果を Fig. 6 に示す。この時の電 子ビームのエネルギーは561 MeV であり,コリメータは 1 mm ϕ (散乱角0.05 mrad) である。スペクトルの測定結 果から,半値幅2.8% (σ =1.2%) が得られた。

コリメータによってレーザー逆コンプトン散乱 y 線の角 度広がりを0.056 mrad として,電子エネルギーに対する レーザー逆コンプトン散乱 y 線のエネルギー広がりの測定 を行った¹⁰⁾。Figure 7 に結果を示す。実験装置の配置図 は Fig. 4 と同様であるが,レーザーには Nd: YAG レー ザーの基本波(1064 nm)を,また,検出器には NaI(Tl) アンチコンプトンシールドを施した,相対効率30%の高 純度 Ge 半導体検出器を用いた。Figure 7 の実線は(2)式 を用いて計算を行った結果で,電子ビームの角度広がりを パラメータとして実験結果にフィットしたものである。こ の結果,蓄積リング中の電子ビームの角度広がりは0.115 mrad という値が得られた。この値は蓄積リングのラティ

Figure 6. Energy spectrum of an 11.5 MeV laser-Compton photons measured with a High-energy and High-resolution spectrometer.

ス計算から予想される,0.1 mrad という値と良い一致を 示しており、レーザー逆コンプトン散乱 y 線のエネルギー 広がりの測定により、電子ビームの角度広がりの測定が可 能であることが示された。

15×15×30 cm³の全吸収型 CsI(Tl) 検出器を用いて, 逆コンプトン散乱 y線の収量の測定を行った¹¹⁾。EGS4¹²⁾ モンテカルロ計算コードを用いて,20 MeV までの y線に 対する相互作用確率を計算した結果,検出効率はほぼ 100%であった。実験装置の配置図は,Fig.4と同様であ る。測定結果をFig.8に示す。y線の収量が電子エネル キーとともに増加しているが,これは(3)式から導かれる ように,単位立体角あたりの散乱断面積が電子のエネルギ ーと共に増加するためである。本実験ではコリメータを一 定にして測定を行ったため,電子エネルギーの増加に伴っ て,レーザー逆コンプトン散乱 y線のエネルギー広がりは 大きくなっているのである。(4)式に適当な条件を代入し て計算した結果を,図中に実線で示す。計算値と実験値の

Figure 7. Energy spread of the laser-Compton backscattered photons measured with an anti-Compton shielded HpGe detector. The scattered angle of the photons are confined in half angle of 0.056 mrad. The solid line indicated a calculated result using eq (2).

Figure 8. Photon yield measured with a CsI detector.

ー致は良く、レーザー逆コンプトン散乱 y 線の収量に関して、電子ビームやレーザービームのパラメータが決まれば、収量の計算も可能であることが示された。

4. 偏極y線

1節で述べたように、レーザー逆コンプトン散乱 y 線の 偏極度に関しては、電子ビームのエネルギーを変化させて y 線の最大エネルギーを変化させる場合、その偏極度の減 少は無いことが予想される。電総研でのレーザー逆コンプ トン散乱 y 線は、用いる蓄積リング TERAS のエネルギ ーが、200 MeV から800 MeV まで連続的に可変であるた め、最大 y 線エネルギーに対する偏極度の減少は無く、必 要な y 線エネルギーに蓄積リングのエネルギーを設定する ことで、ほぼ100%の偏極度が得られることになる。この ことを実験的に確認するために、原子核共鳴散乱実験を行 った。

偏極光子の散乱¹³⁾は無偏極光子の散乱を記述する,通 常の γ−γ 角度相関関数

$$W(\theta) = \sum_{\nu=0,\,2,\,4} A_{\nu}(1)A_{\nu}(2)P_{\nu}(\cos\,\theta) \tag{6}$$

に, 偏極成分の角度相関を加えて,

$$W(\theta, \varphi) = W(\theta) + (\pm)_{L'_{2}} \sum_{\nu=2, 4} A_{\nu}(1) A'_{\nu}(2) P_{\nu}^{(2)}(\cos \theta) \\ \times \cos 2\varphi$$
(7)

と書ける。ここで A_{ν} , A_{ν}' は始状態・中間状態・終状態の スピン・角運動量によってそれぞれ決まる係数で, P_{ν} は Legendre polynomials, $P_{\nu}^{(2)}$ は unnormalized associated Legendre polynomials である。更に散乱光子の断面積を 入射偏極光子の電気ベクトルに平行 ($\sigma_{//}$), 垂直 (σ_{\perp}) 面 内で評価し Asymmetry を

$$A_{y} = \frac{\sigma_{//} - \sigma_{\perp}}{\sigma_{//} + \sigma_{\perp}} \tag{8}$$

と定義すると,

$$A_{y} = \frac{(\pm)_{L'_{2}} \sum_{\nu=2,4} A_{\nu}(1) A'_{\nu}(2) P_{\nu}^{(2)}(\cos \theta)}{\sum_{\nu=0,2,4} A_{\nu}(1) A_{\nu}(2) P_{\nu}(\cos \theta)}$$
(9)

となる。ここで散乱角 θ を90°にとると偶偶核に対して E1 遷移では $A_y=1$, M1 遷移では $A_y=+1$ となる。これは、 100%偏極光子を用いた原子核共鳴散乱実験において、 E1 遷移に対しては、y線偏極軸に垂直な方向にしか光子 が散乱されないことを意味し、逆に M1 遷移に対しては、y線偏極軸に平行な方向にしか散乱が起きない、というこ とを意味している。

実験は¹⁴⁾,電子ビームのエネルギーを570 MeV にし, 100% 直線 偏光 した Nd: YLF レーザーの 2 倍波 (527 nm) を入射した。この時のレーザー逆コンプトン散乱 y 線の最 大エネルギーは5.8 MeV であり, 更に 4 mm φ のコリメー タでエネルキー広がりを19%にしている。このγ線ビー ムを直径10 mm の高濃縮(99.8%)²⁰⁸Pb 棒に対して照射 し、90°方向への散乱光子を相対検出効率120%の高純度 Ge 検出器で測定した。208Pb は偶偶核であり, 5.5 MeV に断面積の比較的大きな E1 遷移状態があることが知られ ている。Asymmetry を簡単に精度良く測定するために, レーザーの偏光面を λ/2 板の出し入れによって90° 切り替 えた。これによりy線の偏極軸も90°切り替え,偏極散乱 実験に起こりがちな測定系の効率の補正や、ジオメトリッ クな効果の補正を一切すること無く、また、検出器を移動 させること無く縦,横両方向の散乱情報を1台の検出器 で測定をすることができた。Figure 9 に得られた散乱光 子のエネルギースペクトルを示す。この図より散乱光子は 偏極軸に水平面内のみで起きていることがわかる。この時 のAyは-0.95±0.05であり、(5)式より計算される偏極 度に,実際の実験配置による減偏極度を考慮したAy=

Figure 9. Pulse height spectrum of the 120% HpGe detector for gamma-rays produced with nuclear resonance fluorescence of 208 Pb which were excited with the linearly-poralized laser-Compton photons.

Figure 10. Pulse height spectrum of the 120% HpGe detector for gamma-rays produced with nuclear resonance fluorescence of ^{12}C which were excited with the linearly-poralized laser-Compton photons.

0.996と非常に良い一致を示すことが分かる。同様に ¹²C に対して行った原子核共鳴散乱実験の結果を Fig. 10に示 す。¹²C では励起エネルギー15.1 MeV に強い M1 遷移が あることが知られている。このため,電子エネルギーを 663 MeV にし, Nd:YLF レーザーの2 倍波を用いた。 Figure 9 とは逆に y 線の偏極軸に平行な面にのみ散乱光 子が測定されており, A_y の実験値0.91±0.16は誤差の範 囲内でほぼ100%偏極していることが確認された。以上の 結果,レーザー逆コンプトン散乱 y 線の偏極度が,電子ビ ームのエネルギーを変化させて y 線の最大エネルギーを変 化させる場合には,その偏極度の減少は無く,ほぼ100% の偏極 y 線が得られていることが分かった。

5. むすび

レーザー逆コンプトン散乱を用いたエネルギー可変高偏

極 y 線ビームの発生原理とその特性ついて簡単に述べた。 この y 線源はエネルギー可変で単色性も良く, 完全偏極 y 線が得られるという優れた性格を有するものの, y 線強度 が制動放射を利用した y 線に比べて低い点等の問題もある が,原子核実験はもとより医療診断技術等への利用など今 後の発展が十分期待される。また,高エネルキー y 線の標 準場としての使用を検討している。現在、電総研レーザー 逆コンプトン散乱 y線利用施設は、電総研内外のグループ に解放され、様々な利用研究が行われている。これまで原 子核のM1 強度分布測定¹⁵⁾や光核反応の微細構造の高分 解能測定¹⁶⁾,軽核における光核反応の測定¹⁷⁾,Ge検出器 の応答関数の研究18)等で成果をあげて来ている。今後, 収量の増加に関しては、スーパーキャビティ等のレーザー の反復利用19)や、自由電子レーザーをレーザー光源とし て用いる方法20,21)などを用いることにより,飛躍的な向上 を目指している。

参考文献

- 1) Feengerg and Primakoff: Phys. Rev. 73, 449 (1948).
- 2) R. H. Milburn: Phys. Rev. Lett. 10, 75 (1963).
- F. R. Arutyunian and V. A. Tumanian: Phys. Lett. 4, 176 (1963).
- O. F. Kulikov, Y. Y. Telnov, E. I. Filippov and M. N. Yakimenko: Phys. Lett. 13, 344 (1964).
- C. Bemporad, R. H. Milburn, N. Tanaka and M. Fotino: Phys. Rev. 138, 6B, 1546 (1965). J. J. Murray and P. R. Klein: SLAC TN-67-19 (1967).
- L. Federici, G. Giordano, G. Matone, G. Pasquariello, P. G. Picozza, R. Caloi, L. Casano, M. P. de Pascale, M. Mattioli, E. Poldi, C. Scaerf, M. Vanni, P. Pelfer, D. Prosperi, S. Fraullani and B. Girolami: Nuovo Cimento 59B, 2, 247 (1980).
- A. M. Sandorfi, M. J. LeVine, C. E. Thorn, G. Giordano, G. Matone and C. Schaerf. IEEE Trans. on Nucl. Sci., NS-30, 4, 3083 (1983).
- M. Anghinoll et al.: GRAAL collaboration report (1991). T. Nakano et al.: Nucl. Phys. A, A629, 559c (1998). T. Mochizuki et al.: Report on Topical Meeting of the Laser Society of Japan No. RTM-97-24, 13 (1997).
- T. Yamazaki, T. Noguchi, S. Sugiyama, T. Mikado, M. Chiwaki and T. Tomimasu: IEEE Trans. on Nucl. Sci. NS-32, 5, 3406 (1985).
- H. Ohgaki, S. Sugiyama, T. Yamazaki, T. Mikado, M. Chiwaki, K. Yamada, R. Suzuki, T. Noguchi and T. Tomimasu: IEEE Trans. on Nucl. Sci. NS-38, 2, 386 (1991).
- H. Ohgaki, S. Sugiyama, T. Noguchi, T. Yamazaki, T. Mikado, M. Chiwaki, K. Yamada and R. Suzuki: IEEE Trans. on Nucl. Sci. NS-40, 4, 400 (1993).
- W. R. Nelson, H. Hirayama and W. O. Roger: "The EGS4 Code Systems". SLAC-Report-265, (1985).
- L. W. Fagg and S. S. Hanna: Rev. Mod. Phys. 31, 711 (1959); J. Rikovska and N. J. Stone: At. Nucl. Data Tables 37, 54 (1987).
- 14) H. Ohgaki, T. Noguchi, S. Sugiyama, T. Yamazaki, T. Mikado, M. Chiwaki, K. Yamada, R. Suzuki and N. Sei: Nucl. Instrum. Methods A353, 384 (1994).
- 15) H. Ohgaki, T. Noguchi, H. Toyokawa, S. Sugiyama, T. Mikado, K. Yamada, R. Suzuki, T. Ohdaira, N. Sei and T. Yamazaki: Proc. of the Int. Conf. On "Nuclear Structure

and Related Topics", 74 (1997).

- 16) H. Harada, Y. Shigetome, H. Ohgaki, T. Noguchi and T. Yamazaki: Phys. Rev. Lett. 80, 33 (1998): H. Harada, Y. Shigetome, H. Ohgaki, T. Noguchi and T. Yamazaki: Proc. of the First International Workshop on EGS4, 266 (1998).
- T. Shima, Y. Nagai, T. Kii, T. Baba, T. Takahashi and H. Ohgaki: Nucl. Phys. A 629, 475c (1998).
- 18) K. Kudo, N. Takeda, A. Fukuda, T. Noguchi, H. Ohgaki, T. Yamazaki and T. Sugita: KEK Proc. 96–10 R/D, 47 (1997).
- J. Chen et al.: Nucl. Instrum. Methods A341, 346 (1994); J.
 Chen et al.: Nucl. Instrum. Methods, A358, 14 (1995); M.
 Fujita et al.: Nucl. Instrum. Methods A358, 524 (1995).
- 20) H. Ohgaki, T. Noguchi, S. Sugiyama, T. Mikado, M. Chiwaki, K. Yamada, R. Suzuki, N. Sei, T. Ohdaira and T. Yamazaki: Nucl. Instrum. Methods A375, 602 (1996).
- V. N. Litvinenko et al.: Phys. Rev. Lett. 78, 4569 (1997); H.
 Ohgaki et al.: Free Electron Lasers 1996, p-II-14; M. Hosaka et al.: Nucl. Instrum. Methods A393, 525 (1997).