トピックス

SPring-8 高エネルギー X 線回折ビームライン BL04B2 におけるランダム系物質の単色高エネルギー X 線回折

小原 真司¹, 鈴谷 賢太郎²

¹高輝度光科学研究センター放射光研究所* ²日本原子力研究所放射光科学研究センター

High-Energy X-ray Diffraction of Disordered Materials in High-Energy X-ray Diffraction Beamline BL04B2 at SPring-8

Shinji KOHARA¹ and Kentaro SUZUYA²

¹Japan Synchrotron Radiation Research Institute (JASRI) ²Synchrotron Radiation Research Center, Japan Atomic Energy Research Institute

The high-energy ($E \ge 30$ keV) X-ray diffraction with the latest generation synchrotron sources as well as the introduction of advanced insertion devices has created new approaches to the quantitative study of the structure of non-crystalline materials because of several improvements: higher resolution in real space due to a wide range of Q, smaller correction terms (especially for absorption correction), reduction of truncation errors, the feasibility of running under extreme environments, including low- and high-temperatures, and of obtaining a direct comparison between X-ray and neutron diffraction data. Recently, this technique has been combined with neutron diffraction with a pulsed source to provide more detailed and reliable structural information not previously available. This article reviews and summarizes a horizontal two-axis diffractometer for non-crystalline materials, installed at the high-energy X-ray diffraction beamline BL04B2 of SPring-8, and recent results obtained from the high-energy X-ray diffraction on several oxide glasses: SiO₂ and GeO₂. In particular, it addresses the structural models of oxide glasses obtained by the reverse Monte Carlo (RMC) modelling technique using both the high-energy X-ray and neutron diffraction data.

1. はじめに

ガラスや液体などのいわゆるランダム系物質は,結晶性 物質にはない特異な物性を示し,その恩恵に授かる範囲は 結晶に劣らず広範囲であることは言うまでもないであろ う。そして,その物性の解明,材料としての実用化とその 安全性の確立には,結晶性物質と同様に構造に基づいた物 性理解が不可欠である。結晶性物質の場合,その構造の規 則性・長周期性から(回折)実験によって得られる構造情 報の量が多く,またその構造を有限群の理論によって表現 できることから,構造の概念が明白であり,その概念に基 づいた解析手法によってかなり正確に構造を把握し,表現 することが可能である。しかし,ランダム系物質の場合に は,構造が統計的に等方性を示し,長周期性がなく,ま た,構造理解の基礎となる解析的な数学理論も欠如してい ることから,未だ構造を解析的に記述する,つまり構造を 決定し表現することが満足に出来ない。それ故,ランダム 系物質については,構造に基づく物性理解,予測および材 料設計は困難であるのが現状である。

これまで多くのランダム系物質の構造が,電子線やX 線,中性子線を用いて研究されてきたが,ほとんどの場 合,比較的解析が容易な短距離の構造(四面体,八面体な どの構造ユニットあるいはクラスター構造)の解析に限ら れていた^{1,2)}。それを明確にすることすら決して容易なこ とではないが,ランダム系物質の持つ特異性を構造的に理 解するにはより高次の広範囲の構造,上記のユニットやク ラスターの繋がり(中距離構造)を知ることが重要であ る^{3,4)}。この中距離構造を,実験的に少しでも解明するた めには,従来のX線回折,中性子回折,EXAFSなどの

* * * * * 前高輝度光科学研究センター 放射光研究所 利用研究促進部門 I 〒679-5198 兵庫県佐用郡三日月町光都 1-1-1 TEL: 0791-58-0831 FAX: 0791-58-0830 E-mail: Kohara@spring8.or.jp 手法に加え,豊富な量のより精度の高い構造情報が得られ る手法の開発が必要である。なぜなら,正確かつ精密な短 距離構造の情報に基づいた中距離構造のモデリングだけが 今のところランダム系物質の構造に関する平均的な描像を 実験的に把握する唯一の方法であると思われるからである。

我々は SPring-8 の高強度の高エネルギー X 線 (37-114 keV) を利用した回折実験によって,ガラスや液体の高精 度の回折データを高い散乱ベクトルQ(=4 π sin θ/λ [Å⁻¹]; 2 θ :散乱角, λ :入射X線の波長[Å])まで測定 し,高い実空間分解能での各原子間相関の分離および帰属 や中距離構造のモデリングを行い,いくつかの重要な知見 を得ることに成功している^{5,6)}。本稿では,この高エネル ギーX線回折によるランダム系物質の構造解析の現状と, SPring-8 の高エネルギーX線回折ビームライン BL04B2 に設置されたランダム系物質専用2軸回折計の概要,お よびそこで行われている高エネルギーX線回折実験の成 果:酸化物ガラスの精密構造解析について紹介する。

2. 高エネルギー X 線回折とは? --その現状と利点---

2.1 高エネルギー X線回折の登場までとその利点

ランダム系物質の構造に関する研究は、古くから主に実 験室光源(CuやMoターゲットなど)から得られるX線 や原子炉による中性子線を用いた回折実験によって行われ てきた。回折実験によって構造に関して直接得られる物理 量は2体分布関数g(r)であり、これは規格化された回折 強度パターンである全構造因子S(Q)

$$S(Q) = \frac{I(Q) - \langle |f(Q)| |^2 \rangle}{\langle |f(Q)| \rangle^2} + 1$$

$$(1)$$

のフーリエ変換として次式で与えられる。

$$g(r) = 1 + \frac{1}{2\pi^2 \rho r} \int_0^{Q_{\text{max}}} Q[S(Q) - 1] \sin(Qr) dQ \qquad (2)$$

I(Q)は原子1個当たりの散乱断面積を表し、〈〉は原子 一個当たりの平均値を意味する。f(Q)、 ρ はそれぞれ、原 子散乱因子(中性子回折の場合は散乱長 b)、原子数密度 である。この実空間おける原子分布g(r)を各原子相関に ついて分離することが、回折法によりランダム系物質の構 造を決定するための最も基本的な方法である。そのために は、(2)式において、フーリエ積分が行われる Q の最大値 を可能な限り大きくとり、より高い実空間分解能を得るこ とが望ましい。中性子回折においては、1960年代後半の 加速器によるパルス中性子源の実用化⁷によって1Å以下 の短波長が TOF(time-of-flight)法によって有効に利用 できるようになり、回折パターンをより高い Q_{max} 値まで 精度良く測定できるようになった^{8,9)}。これは、g(r)にお ける実空間分解能に飛躍的な向上をもたらした。また、中 性子は高い透過能をもつために、セルに封入した試料や高 温電気炉を用いた融体実験が比較的容易に行えることも相 まって、日本 (KENS-KEK)、アメリカ (IPNS-ANL)、 イギリス(ISIS-RAL)などのパルス中性子散乱施設には 1-2 台のランダム系物質専用の回折計が備えられ、アモル ファス金属、無機ガラス、水・水溶液、溶融塩、液体金属 などのランダム系物質の構造研究が多くの研究者よって精 力的に行われることとなった¹⁰⁾。一方,X線回折におい ては、通常回折実験に利用される実験室光源や第二世代の 放射光施設から得られる X 線が比較的低エネルギーであ ったことから、中性子と比較した場合に、その(比較的) 長い波長,低い透過能があたかもX線の欠点であるかの ように認識されていた感があるが,既に1969年には Rh K α 線 (*E*=23.2 keV, λ =0.5 Å) を用いた Q_{max} =20 Å⁻¹ までのシリカガラスの回折測定がこの分野の大御所 Warren により報告されており11)(これは現在でも重要な成果 である), また, 高エネルギー (*E*≥30 keV) X 線利用に よる精度の高い回折実験の必要性12)から(苦肉の策とし て?) 0.2 Åのy線による回折実験もいくつか行われてい る¹³⁻¹⁵⁾。そして、1990年代になり挿入光源の発達や第三 世代放射光の出現によって、はじめて高強度の単色高エネ ルギーX線を用いた回折実験が可能となり、これまでの 回折実験とは違った実験上および構造解析上の利点の数々 がやっと広く知られるようになってきたのである。以下 に, 第三世代シンクロトロン放射光による単色高エネル ギーX線回折の利点を列挙する。

- ①高強度で短波長のX線であるため、比較的低角度の回 折実験で、高い散乱ベクトルQまでの測定が短時間で 可能となり、高分解能の実空間データが得られる。
- ②高い透過能と低角度回折実験であることから,試料や試料容器による吸収や多重散乱の影響が小さく,かつ補正因子の角度依存性をほとんど無視できる。
- ③高い透過能により,試料容器,電気炉やクライオスタットの窓材等の吸収の影響も小さいため,セルにガス封入した試料およびそれらの低温,高温実験が容易である。
- ④透過型の低角度回折実験となることから、広い窓は必要ないので、電気炉などの付属機器の設計や利用が容易である。
- ⑤中性子回折の場合に比べて高強度(高フラックス)であり、通常使われるビームのサイズも格段に小さい(1-4 mm²)ので、微少試料や薄い試料でも十分に精度の高い実験が可能である。
- ⑥透過型の実験であるので、反射型の実験比べて、低いQ 領域において試料表面の影響(固体表面の粗さや液体の 表面張力)を受けにくい。
- ⑦単色光による角度分散型実験であるので、パルス中性子 回折やエネルギー分散型のX線回折に比べてデータ解 析がシンプルであり、かつ初期ビームのエネルギー分布

や様々な補正因子のエネルギー依存性を考慮せずに済む。 このような利点から、単色高エネルギーX線回折の利用 は、質の高いデータが得られるばかりでなく、実験環境を シンプルにし、回折実験を従来よりも容易にするものであ ると言えるだろう。

1995年にシリカガラスに関して単色高エネルギーX線 回 折 の 先 駆 的 な 成 果 を 発 表 し た HASYLABの Poulsen¹⁶⁻¹⁹⁾らは X 線回折および中性子回折から得られる Qの最大値を**Table 1**のように見積もっている¹⁹⁾。現在 では、この高強度の単色高エネルギーX線を用いること によって,パルス中性子回折並に高い Qまで(中性子と は相補的な)回折パターンを、微少試料で測定できるわけ である。ここで、単色高エネルギーX線回折実験の一例 として, **Fig.1**に MgP₂O₆ ガラスの全相関関数 *T*(*r*) (= $4\pi\rho r \cdot g(r)$) を示す^{20,21)}。フーリエ変換に用いられる S(Q)の Q_{\max} が大きいほど,得られる T(r) の分解能が向上す る様子が分かる。Q_{max}が32Å⁻¹の場合では,各相関が分 離されているだけでなく, Mg-O が非対称な分布をして いることも明らかである。こういった実空間分解能の向上 は、複雑なランダム系物質の実空間での各相関の帰属をよ り正確に行い、各結合の化学結合論的な検討を実際に可能 にしている,あるいはその可能性をかなり広げていること

Table 1. Maximum Q value attainable with different neutron and photon sources.¹⁹⁾

	Neutrons		Photons		
	Reactor (hot source)	spallation source	HEP 100 keV	Mo Kα 17 keV	Ag Kα 22 keV
Q_{\max} (Å ⁻¹)	23 ^a	\sim 50 ^b	20-50	16	20

^aWith the D4b instrument at the ILL with the $\lambda = 0.5$ Å option. ^bThere is no principle limit in *Q* with spallation soruces. The time needed to reach a sufficent statistical accuracy up to 50 Å⁻¹ might be rather long.

Figure 1. X-ray-weighted total correlation functions, of T(r), obtained by Fourier transformation with different $Q_{max}^{20,21}$

367

は間違いない。また,一方の構造解析手法として, Q 空間 の実験データ(散乱強度 *I*(*Q*)または構造因子 *S*(*Q*))を 再現するような構造モデルを,様々な方法(例えば,分子 動力学(Molecular Dynamics: MD)法²²⁾,逆モンテカル ロ(Reverse Monte Carlo: RMC)法²³⁾といった計算機シ ミュレーション法など)により構築する方法があるが,比 較できる Q範囲,すなわち実験と構造モデルが一致する Q範囲が広いほど,また(高い統計精度と小さな補正によ り)実験値の精度が高いほどそれを再現できる構造モデル の信頼性は向上することになる。したがって,単に実空間 分解能の向上だけなく,データの量と質の向上という意味 でも単色高エネルギーX線の利用価値は大きい。

2.2 高エネルギーX線回折よるランダム系物質の研究 一これまでの成果—

以上のように、単色高エネルギーX線回折実験は、こ こ数年になって可能になったものであり、これから様々な ランダム系物質に適用されて多くの成果が期待できるもの であるが、ここでその現状と将来展望を兼ねて、これまで の重要な成果をまとめてみることにする。

単色高エネルギーX線回折によるランダム系物質の本 格的な構造解析は, HASYLABのPoulsen と Neuefeind ら^{16,17)}によって初めて行われた。彼らは、DORIS-IIIの BW7 ウィグラービームラインで95 keV の単色光を用いて, SiO₂ ガラスの干渉関数 $Q \cdot i(Q)$ を約20時間で $Q_{\text{max}} = 31.5$ Å-1まで測定した結果を1995年に発表した。また, Neuefeind らは ESRF の挿入光源のビームライン ID15A で GeO₂ ガラスの回折パターンを Q_{max}=33.5 Å⁻¹ まで精度良 く測定した²⁴⁾。いずれの研究も、ガラスの構造モデルの 検討を通して,従来のパルス中性子回折による高 Q 測定 だけでなく,X線においても高いQまでの精度の高い データが、信頼性の高い詳細な構造解析には必要であるこ とを明らかにした。一方, Badyal らは, 1997年に APS, SRI-CAT の 1-BM 偏向電磁石ビームラインで50 keV の 単色光を用いた溶融 FeCl₃の実験結果を発表した²⁵⁾。これ は高エネルギーX線の高透過性を利用して、電気炉中の 石英セルにガス封入された高温融体のS(Q)を透過型回折 実験によって高い精度で決定するという、高温融体研究に とって長い間望まれていた試みであった。さらに彼らは, 中性子回折の結果および MD 法による計算結果を併用 し, 部分構造因子の導出や, X線回折で通常用いられて いる(球対称の電子分布を持つ孤立原子や完全なイオンに ついての) 原子散乱因子 f(Q) の溶融塩への適用の妥当性 を検討して、電子構造まで踏み込んだ議論を行っている。 2000年には、Petkov と Shastri らが APS, SRI-CAT の1 -1D アンジュレータビームラインで80.6 keV の単色光で Ca_{x/2}Al_xSi_{1-x}O₂ガラス (x=0, 0.25, 0.5, 0.67)の構造因子 S(Q)を $Q_{\text{max}} = 40$ Å⁻¹まで精度良く測定し、非常に高い 実空間分解能を得ることにより一連のガラスの Al-O およ

び Si-O 相関の分離など精密な構造解析を行っている²⁶⁾。 また, Tomberli らは, ESRF の ID15A において, 電子数 が同じで原子配置もほとんど同じである H2O と D2O 液体 のS(Q)を測定し、通常のX線回折では見分けることの 出来ない2つの水の静的な構造の違い,つまり電子構造 の差異(これは量子効果である)を実験的に明らかにして いる27)。このような電子数の少ない物質における微少な 差異の検出は、まさに高強度の高エネルギーX線による 高精度の回折実験によってはじめて可能となったと言える であろう。単色高エネルギーX線回折によるランダム系 物質の構造解析は,まだ歴史は浅いものの,広い Q範囲 と高い実空間分解能による,パルス中性子回折とは相補的 な、原子配置(構造)の精密解析から、中性子回折では知 ることの出来ない(ランダム系物質ではこれまで実験精度 的にあまり研究対象にはならなかった)電子(分布)構造 の研究までをその範疇に入れて、着実に拡大しつつあると 言えよう。

高エネルギーX線回折ビームラインBL04B 2二軸回折計

3.1 ランダム系物質専用二軸回折計の概要

SPring-8の高エネルギーX線回折ビームライン BL04B2は、この高エネルギーX線という第三世代放射 光源の大きな特徴を生かすべく建設された。ビームライン の詳細については、一色らの論文²⁸⁾を参照されたい。本 ビームラインでは高エネルギー領域での集光光学系とし て、水平振りの湾曲型結晶分光器を採用している。この分 光器は、一結晶分光器でブラッグ角3°に固定されてい る。現在、分光器にはSi(111)とSi(220)結晶が設置され ており、それぞれ37.8 keV, 61.7 keV の単色光が得られ る。(後述するように、高次光で、Si(333)反射からの 113.4 keV の利用も十分可能である。)

Figure 2に我々が開発したランダム系物質専用の二軸

回折計²⁹⁾の模式図を, **Fig. 3**に電気炉を搭載したときの 写真を示した。二軸回折計は水平型となっており, 2 θ (水平)スキャンの際に高角度になるにつれて偏光因子に よって回折強度が減少してしまうという問題がある。しか し,利用に想定していたフォトンエネルギーは60-120 $\kappa\epsilon\Omega$ であり,かなり高Qまで測定するとしても比較的低 角度での測定となるので,偏光因子の影響は小さいと考え, 2θ 軸に対してかなりの荷重となる鉛遮蔽や専用の高温融 体用電気炉,クライオスタットの設計やそれらの扱いやす さを優先して水平型を採用している。

実験は、モノクロメータで単色化された X 線をイオン チャンバー (H_i) でモニターし、ついで試料によって散 乱された X 線は上流の受光スリット (B_{ru})、コリメータ (A_{ru}, A_{rd})、下流のスリット (B_{rd}) を通り、半導体検出器 (I) に入り、この測定を角度分散法により θ -2 θ のステッ プスキャンを行うというシンプルなものである。

ランダム系物質の X 線回折パターンは結晶に比べると ブロードないわゆるハローパターンである。こういった実 験データを例えば $Q_{\min}-Q_{\max}$ が0.5-30 Å⁻¹の大変広い Q

Figure 3. High-temperature furnace $({\sim}1500^\circ\!C)$ installed at BL04B2.

Figure 2. Schematic views of two-axis diffractometer installed at BL04B2 bending magnet beamline.²⁹⁾ (a) side view, (b) top view, A collimator, B slit, C 2θ main arm, D 2θ sub arm, E θ stage, F vacuum chamber, G beam stop, H ionization chamber, I scintillation counter or solid state detector, J table.

範囲で,高エネルギーX線によって精度良く測定するためには,

①必要最小限の20分解能で、ビームをなるべくスリット で成形せずにサンプルに当てること

②検出器に入るバックグラウンドを低く抑えること が重要である。①については、先にも述べたように BL04B2 は集光光学系が組まれているため、ランダム系物 質のX線回折を行うのに必要なQ分解能,つまり 2θ 分 解能を満たすように、下流の受光スリット(Bnd)のサイ ズを調整し、かつ分光結晶の曲率を変化させ、ここにX 線を集光させることで達成できる。②については、バック グラウンドの起源として,試料を透過したX線によって 発生する空気散乱が主なものと考えられる。この影響は, 当然ながら小角領域において最も強く現れるが、その対策 として,透過X線を可能な限り上流で止めることが必要 である。そのため、当初はビームストップを試料の直後に 設置していたが、そうすると、必要な小角領域の散乱 X 線をかなり止めてしまうため、結果として小角領域の測定 が限定され、必要かつ十分に小さい Q_{\min} からの測定が不 可能になる。ランダム系物質の構造解析において、特に密 度・濃度揺らぎや中距離構造を議論する場合,このQmin 付近の回折パターンも正確に測定する必要がある30)。そ こで、十分に小さい Q_{\min} を確保し、かつ試料を透過した X線を確実に止めるために、Fig.2に示したように、湾 曲の可動ビームストップ(G)を20軸上の受光スリット の位置 (B_{nu}) に設置した。これによって、上流の受光ス リット(Bru)が小角の測定時のダイレクトビームの進入 を抑え、より高角を測定時でも常時ダイレクトビームはス トップされている。また、 Q_{\min} は、フォトンエネルギー が61.7 keV の場合, 0.16 Å⁻¹ まで確保された。空気散乱 の寄与は、さらに試料ステージに真空チャンバー(G)を 設置することでほぼ完全に抑えることができる。

二軸回折計の可動部を Table 2 に示す。可動部はすべ てステッピングモーターで駆動される。回折計の制御は, PM16C (㈱ツジ電子製) 経由で GPIB で行っており,ま た,ディスクリミネータによりエネルギー選別された測定 データも GPIB 経由で取り込まれている。また,マルチチ ャンネルアナライザのデータは別途イーサネット経由で取 り込まれる。本実験のような広い Q範囲の測定の場合, 測定データ点数は比較的大きなもの(例えば,0.5–30 Å⁻¹ の場合,ステップを ΔQ =0.025 Å⁻¹ とすると1181点) に なり,その一点毎に1024-2048チャンネルのデータが取り 込まれることになるが,その点において本システムは大変 迅速かつ安定である。

3.2 SPring-8 における酸化物ガラスの単色高エネルギーX 線回折実験

SPring-8 においては,1998年から原研ビームライン BL14B1 において酸化物ガラスや乱れた局所構造を持つ強

Table 2. The specification of two-axis diffractometer installed at $BL04B2.^{29)}$

20	$(\mathbf{E}_{\mathbf{z}}, 2\mathbf{C})$	10° 150°	4.0 0.001°	
20 arm	$2\theta_{\text{main}}$ (Fig. 2C)	$-10 \sim 150$	$\Delta \theta = 0.001$	
	$2\theta_{sub}$ (Fig. 2D)	$-120^{\circ} \sim 10^{\circ}$	$\Delta \theta = 0.001^{\circ}$	
Sample stage	θ	$-180^\circ\!\sim\!180^\circ$	$\Delta \theta = 0.001^{\circ}$	
(Fig. 2E)	X	$\pm10~mm$		
	Y	$\pm 10 \text{ mm}$		
	Ζ	$\pm 10 \text{ mm}$		
	R_x	$\pm 3^{\circ}$		
	R_y	$\pm 3^{\circ}$		
Collimator	X_c	$\pm10~mm$		
(Fig. 2A)	Z_c	$\pm10\ mm$		
	R_{cy}	$\pm 10^{\circ}$		
	R_{cz}	$\pm180^\circ$		
Table (Fig. 2J)	X_t	$\pm 15 \text{ mm}$		

誘電体結晶の単色高エネルギー X 線回折が始められた。 当初は、30 keV 程度の X 線を用いた実験が行われていた が、1999年には、米田らにより開発されたサジタルフ ォーカスベンダーによる集光光学系³¹⁾を用いて B₂O₃ ガラ スの S(Q) を $Q_{\text{max}} = 24$ Å⁻¹ まで精度良く測定することに 成功し、パルス中性子回折の結果と RMC シミュレーショ ンの併用によってその中距離構造の詳細が明らかにされ た⁵⁾。また1999年には共用ビームラインである BL04B2 の 2 軸回折計が完成、実験が開始され、翌年には、61.7 keV の単色光を用いて、SiO₂ ガラスの S(Q) を $Q_{\text{max}} = 36$ Å⁻¹ まで精度良く測定することが可能になった²⁹⁾。

以下に、この BL04B2 における測定例として、酸化物 ガラスに関する測定結果^{6,29,32,33)}を紹介する。Figure 4 に, SiO2ガラスの高エネルギーX線回折パターンを示す。試 料のガラスは3mm厚の板状で、ビームサイズは試料位置 で1×1 mm²,透過型 θ-20 測定である。低角までバック グラウンドが抑えられており、非常にS/Nの高い実験で あることが分かる。Q=0.5 Å⁻¹ から17 Å⁻¹ までの測定に 3.9時間, Q=27 Å⁻¹ までに8.5時間, Q=36 Å⁻¹ までは13 時間の測定時間を要している。高Q側のデータの測定に 長時間を要している最も大きな理由は、Fig. 4 で高Q側 にピークや振動らしきものが全く見られないことからも明 らかなように、Qが大きくなるにつれて干渉性散乱の強度 が非常に小さくなり、逆に非干渉性散乱(コンプトン散乱) の寄与が大きくなるからである。Figure 5 にこの実験に おける Ge 半導体検出器による SiO₂ ガラスのエネルギー スペクトルを示す。Qが大きくなるにつれて、コンプトン 散乱のエネルギーシフトが大きくなり,また61.7 keV 付 近の干渉性散乱の割合が小さくなっていくのが分かる(縦 軸のスケールに注意)。このように、非常に高 Qまで精度 の良い S(Q) を得るには、干渉性散乱のみのカウントの積 算で十分な統計精度が得られるように、長時間の測定が必 要となる。したがって、本当にどの程度のQまでどれだ けのステップ *4Q* で測定を行う必要があるのか, 各研究の

Figure 4. Raw data for vitreous SiO_2 at 61.7 keV. The total scattering is shown as full line, the background as dashed line. Different experimental set ups were used for the data collection at low and high Q.

Figure 6. X-ray- and neutron-weighted interference functions, Q [S(Q)-1], of vitreous SiO₂. (a) high-energy X-rays,²⁹⁾ (b) thermal neutrons.³⁴⁾ Dotted lines: experimental data, solid lines: RMC model.^{6,29,33)} X-ray data are displaced upward by 5 for clarity.

Figure 5. Total X-ray diffraction energy spectra from v-SiO₂. (a) $Q=2 \text{ Å}^{-1}$, (b) $Q=10 \text{ Å}^{-1}$, (c) $Q=20 \text{ Å}^{-1}$, (d) $Q=40 \text{ Å}^{-1}$. The dashed line is a guide to the eye.

目的とするところに沿って事前に十分な検討が必要である。

Figure 6に **Fig. 4**の回折パターンの解析から得られた 構造因子 S(Q) に Qの重みのついた干渉関数 $Q[S(Q) - 1]^{29)}$ をパルス中性子回折の結果³⁴⁾と RMC シミュレーショ ン²³⁾によるフィッティング結果^{6,29,33)}とを併せて示す。 BL04B2 で得られたデータは,高い統計精度で高 Q領域 まで明確な振動を示しており,RMC フィッティングの結 果から推定するにパルス中性子の結果と遜色のない程度の 信頼性を持っていることが分かる。**Figure 7**に **Fig. 6**の 干渉関数をフーリエ変換することにより得られた二体分布 関数 g(r)を示す。どちらも Q_{max} =34 Å⁻¹ という非常に高 い Q まで干渉関数をフーリエ積分しているため,実空間 のピーク分解能は非常に高く,特に X 線回折から得られ たg(r)では,中性子の場合とは重みが異なるため,O-O と Si-Si のピークを完全に分離して観察することができる。

Figure 7. X-ray- and neutron-weighted total pair-correlation functions, g(r), of vitreous SiO₂. (a) high-energy X-rays,²⁹⁾ (b) thermal neutrons.³⁴⁾ Lorch modification function³⁵⁾ was used in the Fouriertransformed with $Q_{\text{max}} = 34 \text{ Å}^{-1}$. X-ray data are displaced upward by 5 for clarity.

Si-Siのピークは、SiO₂ ガラスの構成ユニットである SiO₄ 四面体のつながり角 Si-O-Siの角度分布を表してお り¹¹⁾,このピークの正確な把握は中距離構造を知る上で 非常に重要である。

現在,この BL04B2 の二軸回折計で十分な精度で測定 できる Q 範囲は,分光結晶が Si(111)で37.8 keV の場合, 0.10 < Q < 22 Å⁻¹, Si(220)で61.7 keV の場合0.16 < Q < 34 Å⁻¹である。しかしながら,重元素を多く含む試料を透 過法で測定する場合や,その重元素からの蛍光 X 線の影 響を考えると,100 keV 以上の高エネルギー X 線の利用 が必要不可欠である。BL04B2 では,分光結晶に Si(111) を用いた場合,3次光である Si(333)反射も十分な強度を 持っているのでこれを利用することができる。**Figure 8** にこの Si(333)反射113.8 keV の単色光を用いて得られた

Figure 8. X-ray-weighted total structure factor, S(Q), of vitreous GeO₂ obtained with 113.8 keV photons.³²⁾

GeO₂ ガラスの構造因子 S(Q) を示す³²⁾。試料のガラスは 3 mm 厚の板状で,透過型 θ-2θ 測定である。高 Q 側の統 計精度は十分ではないものの、このQ範囲が $2\theta < 40^{\circ}$ の 低角度で測定されているので、角度依存性のある補正の必 要がほとんどなく、質の高いデータが得られている。より 高いエネルギーの利用は、入射X線の強度が減少し、ま た、小角度の回折実験となるためにより一層高い角度分解 能も要求されるので,BL04B2の二軸回折計では,この 113 keV 程度のエネルギーが利用の限界であると考えられ る。 GeO_2 ガラスは比較的原子番号の大きいGeが GeO_4 四面体の強固な構造ユニット=短範囲構造を形成している ため, 高い Q まで強い振動が観察されている。このよう なケースでも測定に約16時間を要しているので,原子番 号の小さい元素から構成されている試料、例えば水や有機 液体などの回折パターンを常識的な測定時間で高いQま で精度良く測定するには、現在のBL04B2では強度不足 であると言える。BL04B2では、これまでのところガラス や比較的重い元素が含まれている室温の液体、溶融塩など が研究対象とされているが、水溶液系、高分子系、生体系 などの軽元素からなる物質の研究は、これからより一層重 要になると思われるので、それらに対してはより高強度の 高エネルギーX線の利用, すなわちアンジュレータやウ ィグラーなどの挿入光源の利用が不可避であろう。

3.3 研究例1:酸化物ガラスの短・中距離構造の解折

本項では、高エネルギーX線回折によるランダム系物 質の研究例として、逆モンテカルロ法(RMC)を用い、 前項の高エネルギーX線回折の結果とパルス中性子回折 を併用した、基本的酸化物ガラスであるSiO₂および GeO₂ガラスの中距離構造の研究^{6,33)}を紹介する。逆モン テカルロ法とは、その物質の原子数密度を反映した箱の中 の数千から数万の粒子(原子またはイオン)をモンテカル ロステップによって動かしていくことにより、実験値(例 えばS(Q)やg(r)など)とその時々の粒子配置からの計 算値との差の自乗和が最小になるような粒子配置=構造モ デルを構築する手法²³⁾であり、密度と実験データを再現 し、かつ中距離構造に関する情報も豊富に含んだ大きな3 次元構造モデルを構築できるという利点がある。また, SiO₂ および GeO₂ ガラスのように構造ユニットとして SiO₄ や GeO₄ 四面体のような既知の構造を持っている場 合には, RMC モデルがそのような短範囲構造を持つよう に拘束条件を設けることも可能であり,現在では,他の実 験による既知の構造情報をもとに初期構造を構築する,あ るいはその情報を拘束条件として取り入れることが,この 方法の主流となっている³⁶⁾。詳細については,数多くの 解説^{37,38)} や論文^{5,23,36,39)} があるのでそれらを参考にされた い。

SiO₂および GeO₂ ガラスは,基本的な網目形成(network former)ガラスであり,四面体の構造ユニット=短 距離構造(SiO₄, GeO₄)を持つという共通点がある。この 四面体のユニットが結合することにより様々なリング構造 =中距離構造が形成されると考えられているが,それぞれ のリング構造とその構成,そして SiO₂ ガラスと GeO₂ ガ ラスの中距離構造の違いなどはまだ実験的に解明されてい ない。

今回, RMC シミュレーションを行うにあたり, BL04B2 で測定された結果およびパルス中性子回折から得 られた結果を併用している。それは,そのX線および中 性子の結果がそれぞれ互いに異なったかつ精度の高い構造 情報を含んでいるからである。SiO₂ ガラスおよび GeO₂ ガラスのX線回折の構造因子 $S^{x}(Q)$,中性子回折の構造 因子 $S^{N}(Q)$ と部分構造因子 $S_{ij}(Q)$ の関係はそれぞれ以下 のような式で表される。

v-SiO₂:

$$\begin{split} S^{\rm X}(Q) = & 0.218 \; S_{\rm SiSi}(Q) + 0.498 \; S_{\rm Si0}(Q) + 0.284 \; S_{\rm 00}(Q) \quad (3) \\ S^{\rm N}(Q) = & 0.069 \; S_{\rm SiSi}(Q) + 0.388 \; S_{\rm Si0}(Q) + 0.543 \; S_{\rm 00}(Q) \quad (4) \\ {\rm v-GeO_2:} \end{split}$$

$$\begin{split} S^{\rm X}(Q) = & 0.444 \; S_{\rm GeGe}(Q) + 0.444 \; S_{\rm Ge0}(Q) + 0.112 \; S_{\rm O0}(Q) \; (5) \\ S^{\rm N}(Q) = & 0.171 \; S_{\rm GeGe}(Q) + 0.485 \; S_{\rm Ge0}(Q) + 0.344 \; S_{\rm O0}(Q) \; (6) \end{split}$$

各式の係数(各相関の重み)は、それぞれの原子相関の原 子散乱因子f(Q)(中性子の場合は散乱長b)と組成(原 子分率)の積によって決まり、和が1になるように規格 化されている。ここでは、X線回折の場合、原子散乱因 子の代わりに原子番号を用いて重みが計算されている。こ れらの式より、相対的に、中性子回折の場合はO-O相関 の寄与が、X線回折の場合はSi-Si, Ge-Ge 相関の寄与が 大きいことが分かる。したがって、広いQ範囲の高精度 のX線、中性子両データを併用することによって、短距 離から中距離構造までかなり信頼性の高い精密な構造解析 が期待できる。

Figure 9に SiO₂ ガラスと GeO₂ ガラスの高エネルギー X 線回折^{29,32)}および中性子回折^{34,40)}による構造因子 *S*(*Q*) および RMC による部分構造因子 *S_{ij}*(*Q*) を示す。RMC シ ミュレーションは、SiO₂ および GeO₂ ガラス共に3000個

Figure 9. X-ray- and neutron-weighted total structure factors, S(Q) and partial structure factors $S_{ij}(Q)$ of (a) v-SiO₂ and (b) v-GeO₂.^{6,33)}

Dashed lines; RMC model, solid lines: experimental data

の粒子で行われている。この RMC による構造モデルから 計算されたS(Q)は両ガラス共に、X線、中性子回折の実 験値を広いQ範囲で良く再現している。また,SiO2ガラ スの各部分構造因子は、Vashishta らにより報告されてい る MD シミュレーションの結果41) との非常に良い一致が みられた。この Vashishta らの MD の結果は,その構造 モデルから計算された中性子の重み付き構造因子 S^N(Q) が中性子回折実験の結果と非常に良く一致しており、数あ る SiO2 ガラスの MD の報告の中でも実験結果と比較する に足る数少ない成果の一つである。Figure 10に RMC か ら得られた構造中に存在するリングの分布を示す。これよ り、SiO₂ガラスは、これまで指摘されてきたように、6 個のSiO4四面体から形成される6員環が最も多く存在す るが、それ以外のリングも6員環を中心として広く存在 していることが明らかになった。一方, GeO2 ガラスの場 合は、SiO₂ガラスと同様6個のGeO₄四面体から形成さ れる6員環が最も多いが、同じ程度に7員環も数多く存 在しており、SiO2ガラスに比べて、3員環から10員環ま で幅広く分布しているという違いが見られた。この違いは Fig. 11に示したような RMC から得られた 3 次元構造か らも確認することができた。こうした構造モデルは、結晶 の場合と異なり、ユニークなものとは言えないが、 密度と 2つの異なった情報を含む精度の高い回折実験データを十 分に再現し、このリングに関する解析からも分かるよう に,中距離構造,物性を考える上で基礎となる情報を提供 する。したがって、ここで紹介した高エネルギーX線回 折,中性子回折,RMC シミュレーションという組み合わ せは、SiO₂ガラスのような一般的でかつランダム系物質 の構造・物性理解の基礎となる物質について,大変有用か

Figure 10. The ring size distributions of (a) v-GeO_2 and (b) v-SiO_2.^{6,33)}

つ信頼できる構造解析法として今後益々重要になると思われる。

3.4 研究例2:高温電気炉を用いたシリカガラスの構造 変化

BL04B2 においてこれまで実験が行われている物質は, ガラスや室温の液体,溶融塩であるが,2軸回折計専用の 透過型高温電気炉(**Fig. 3**)の立ちあげが順調に進んでお り,最近,SiO₂ガラスの1050℃における透過型高温 X 線 回折実験が61.7 keVの高エネルギーX 線を用いて行われ たので報告する。**Figure 12**に室温および1050℃における 構造因子 $S(Q)^{42}$ を示す。高温の SiO₂ガラスの構造変化 については,これまで Susman 6^{43} によりパルス中性子

(a) (b)

Figure 11. A 10 Å thick slice of part of the largest RMC produced configurations of (a) v-SiO₂ and (b) v-GeO₂,³³⁾

Figure 12. X-ray-weighted total structure factors, S(Q), of v-SiO₂.⁴²⁾ Dotted line: room temperature, solid line: 1050°C

回折を用いた室温, 684℃, 1036℃の測定結果が報告され ている。その中性子回折結果によると、温度の上昇にとも ない Q=1.5 Å⁻¹ 付近の FSDP (First sharp diffraction peak) または FSDP (First Sharp Diffraction Peak) を含め て、Q=20Å⁻¹までS(Q)の振動が徐々に減衰していく様 子が観測さている。一方,高エネルギーX線回折の結果 では Fig. 12から分かるように、Q=4-20 Å⁻¹の範囲で室 温と1050℃の*S*(*Q*) に顕著な差が見られ,温度上昇による 振動の減衰傾向は中性子回折の結果と良く一致しているが、 Q=1.5 Å⁻¹ 付近のFSDPの強度はほとんど変化がなく, ピーク位置が僅かに低Q側にシフトしていた。以上の結 果は、SiO₂ガラスのSiO₄四面体からなるネットワーク構 造が高温でも極めて安定であり、1000℃の高温でも熱振 動によりわずかに平均的な中距離構造に変化があらわれる 程度であることを示している。また,X線と中性子回折 の FSDP に関する結果の違いは, FSDP への各部分構造 因子の寄与(重み)がX線と中性子でそれぞれ異なるた めであると考えられる。この差異を利用して,現在,

RMC シミュレーションにより「わずかな中距離構造の変 化」とはいったいどのようなものなのかを解析中である。 試料セルの問題はあるものの、本電気炉の利用によって、 1500℃までの透過型高温回折実験が可能であることか ら、今後、高エネルギーX線回折によって多くの溶融 塩、液体金属などの高温研究が展開されていくものと思わ れる。

4. おわりに

構造解析という視点だけから言えば、ランダム系物質の 回折実験は、低温や高温実験が比較的簡単に行え、高い Q までの測定が可能であるパルス中性子回折による研究が, これまでは最も一般的であった。しかし、本稿をご覧いた だいてお分かりいただけたように,SPring-8にはランダ ム系物質専用の回折計が設置されており、高エネルギー X線の利用によって、中性子と相補的な高いQまでのX 線回折パターンが、少量の試料で簡便に測定できるように なっている。今後、多くのランダム系物質の研究者、中性 子との併用を考えている方々や中性子回折実験に必要な量 の試料を得るのにお困りの方々、などに BL04B2 での実 験を是非試みていただきたいと思う。また、このように高 い Q まで回折パターンを測定し, 高い分解能の実空間 データを利用する実験および構造解析は、結晶(特に局所 的に乱れた構造を持つ誘電体など)の構造解析法としても, PDF (pair distribution function) 法^{44,45)} として海外で急速 に広まりつつあり, SPring-8 においても PDF 法によって 強誘電体構造相転移を示す半導体混晶の研究4⁶⁾などが精 力的に行われている。今後,この単色高エネルギーX線 回折法が、PDF 法のような新しい試みも含めて、その可 能性を拡げ、ランダム系物質の構造物性および乱れた局所 374

構造の理解に大きく寄与できることを期待したい。

なお,本稿では高エネルギーX線回折を用いたランダ ム系物質の構造解析についてのみ紹介したが,ESRFや APSでは,その高い透過性から酸化物超伝導体のテープ などの多結晶材料の研究(結晶粒成長のin-situ 測定^{47,48}, 残留応力測定⁴⁹⁾,集合組織の解析^{50,51)}など)が精力的に行 われている。それらについては,論文^{47,48,50)}や解説^{49,51,52)} を参考にして頂きたい。

謝辞

SPring-8 BL04B2 へのランダム系物質用二軸回折計の 設置には、石川哲也氏(理研)、大野英雄氏(原研,現 JASRI)、下村 理氏(原研)の多大なご尽力を頂きまし た。また、BL04B2の光学系の設計および立ち上げは大石 泰生氏(JASRI)、一色麻衣子氏(JASRI)、後藤俊治氏 (JASRI)、竹下邦和氏(JASRI)によって行われました。 制御ソフトウェアの作成は、松本徳真氏(原研)のご指導、 ご協力のもとで行われました。ここに深く感謝いたします。

二軸回折計全般の設計につきましては、㈱リガクおよび ユニオン工学のスタッフの皆様にご協力頂きました。また 二軸回折計の立ち上げには、SPring-8利用者懇談会ラン ダム系物質高エネルギーX線散乱サブグループの皆様、 坂井一郎氏(立命館大学)、梶並昭彦氏(神戸大学)、米田 安宏氏(原研)、柏原泰治氏(JASRI)、梅咲則正氏 (JASRI)に協力していただきました。

本研究の一部は,平成12年度および13年度 SPring-8 高 度利用技術研究開発の援助のもとに行われました。

参考文献

- 1) A. C. Wright: Adv. Struct. Res. Diffr. Meth. 5, 1 (1974).
- A. C. Wright and A. J. Leadbetter: Phys. Chem. Glasses 17, 122 (1976).
- 3) S. R. Elliott: Nature 354, 445 (1991).
- D. L. Price: Current Opinion in Solid State & Material Science 1, 572 (1996).
- 5) K. Suzuya, S. Kohara, Y. Yoneda and N. Umesaki: Phys. Chem. Glasses **41**, 282 (2000).
- 6) S. Kohara and K. Suzuya: Phys. Chem. Glasses, in press.
- M. Kimura, M. Sugawara, M. Oyamada, Y. Yamada, S. Tomiyoshi, T. Suzuki, N. Watanabe and S. Takeda: Nucl. Instr. and Meth. **71**, 102 (1969).
- R. N. Sinclair, D. A. G. Johnson, J. C. Dore, H. H. Clerke and A. C. Wright: Nucl. Instr. and Meth. 117, 445 (1974).
- 9) K. Suzuki, M. Misawa, K. Kai and N. Watanabe: Nucl. Instr. and Meth. 147, 519 (1977).
- W. S. Howells and A. C. Hannon: J. Phys. Condens. Matter 11, 9127 (1999).
- 11) R. L. Mozzi and B. E. Warren: J. Appl. Cryst. 2, 164 (1969).
- 12) P. A. Egelstaff: Adv. Chem. Phys. 53, 1 (1983).
- 13) J. H. Root, P. A. Egelstaff and A. Hime: Chem. Phys. 109, 437 (1986).
- 14) S. Takeda and P. A. Egelstaff: Can. J. Phys. 73, 735 (1995).
- C. J. Benmore and P. A. Egelstaff: J. Phys. Condens. Matter 8, 9429 (1996).
- 16) H. F. Poulsen, J. Neuefeind, H.-B. Neumann, J. R. Schneid-

er and M. D. Zeidler: Nucl. Instr. and Meth. B97, 162 (1995).

- 17) H. F. Poulsen, J. Neuefeind, H.-B. Neumann, J. R. Schneider and M. D. Zeidler: J. Non-Cryst. Solids 188, 63 (1995).
- 18) R. Bouchard, D. Hupfeld, T. Lippman, J. Neuefeind, H.-B. Neumann, H. F. Poulsen, U. Rütt, T. Schmidt, J. R. Schneider, J. Süssenbach and M. von Zimmerman: J. Synchrotron Rad. 5, 90 (1998).
- J. Neuefeind and H. F. Poulsen: Physica Scripta T57, 112 (1995).
- 20) 水木純一郎,小西啓之,西畑保雄,高橋正光,鈴谷賢太郎,松本徳真,米田安宏:日本結晶学会誌 42,68 (2000).
- 21) H. Ohno, S. Kohara, N. Umesaki and K. Suzuya: J. Non-Cryst. Solids 293–295, 125 (2001).
- 22) L. F. Gladden: J. Non-Cryst. Solids 119, 318 (1990).
- 23) R. L. McGreevy and L. Pusztai: Mol. Simul. 1, 359 (1988).
- J. Neuefeind and K.-D. Liss: Ber. Bunsenges. Phys. Chem. 100, 1341 (1996).
- 25) Y. S. Badyal, M.-L. Saboungi, D. L. Price, D. R. Haeffner and S. D. Shastri: Europhys. Lett. 39, 19 (1997).
- 26) V. Petkov, S. J. L. Billinge, S. D. Shastri and B. Himmel: Phys. Rev. Lett. 85, 3436 (2000).
- 27) B. Tomberli, C. J. Benmore, P. A. Egelstaff, J. Neuefeind and V. Honkimäki: J. Phys. Condens. Matter 12, 2597 (2000).
- M. Isshiki, Y. Ohishi, S. Goto, K. Takeshita and T. Ishikawa: Nucl. Instr. and Meth. A467-468, 663 (2001).
- 29) S. Kohara, K. Suzuya, Y. Kashihara, N. Matsumoto, N. Umesaki and I. Sakai: Nucl. Instr. and Meth. A467-468, 1031 (2001).
- 30) A. C. Wright: J. Non-Cryst. Solids 179, 84 (1994).
- Y. Yoneda, N. Matsumoto, Y. Furukawa and T. Ishikawa: J. Synchrotron Rad. 8, 18 (2001).
- 32) K. Suzuya, I. Sakai, N. Umesaki and S. Kohara: submitted to J. Phys. Soc. Jpn.
- 33) S. Kohara and K. Suzuya: submitted to J. Chem. Phys.
- 34) K. Suzuya, D. L. Price, M.-L. Saboungi and H. Ohno: Nucl. Instr. and Meth. B133, 57 (1997).
- 35) E. A. Lorch: J. Phys. C2, 229 (1969).
- 36) J. D. Wicks, L. Börjesson, G. Bushnell-Wye, W. S. Howells and R. L. McGreevy: Phys. Rev. Lett. 74, 726 (1995) .
- 37) R. L. McGreevy and M. A. Howe: Annu. Rev. Mater. Sci. 22, 217 (1992).
- 38) R. L. McGreevy: Nucl. Instr. and Meth. A354, 1 (1995).
- 39) K. Suzuya, S. Kohara and H. Ohno, Jpn. J. Appl. Phys. Suppl. 38, 144 (1999).
- 40) C. E. Stone, A. C. Hannon, T. Ishihara, N. Kitamura, Y. Shirakawa, R. N. Sinclair, N. Umesaki and A. C. Wright: J. Non-Cryst. Solids 293-295, 769 (2001).
- 41) P. Vashishta, R. K. Kalia, J. P. Rino and I. Ebbsjö: Phys. Rev. B41, 12197 (1990).
- 42) S. Kohara *et al.*: to be submitted.
- 43) S. Susman, K. J. Volin, D. G. Montague and D. L. Price: Phys. Rev B43, 11077 (1991).
- 44) T. Egami: Local Structure from Diffraction, ed. by S. J. L. Billinge and M. F. Thorpe, p. 1 (Plenum Press, New York, 1998).
- 45) V. Petkov, I-K. Jeong, J. S. Chung, M. F. Thorpe, S. Kycia and S. J. L. Billinge: Phys. Rev. Lett. 83, 4089 (1999).
- Y. Yoneda, N. Matsumoto, K. Suzuya, S. Kohara and J. Mizuki: Ferroelectrics, in press.
- 47) H. F. Poulsen, T. Frello, N. H. Andersen, M. D. Bentzon and M. von Zimmermann: Physica C298, 265 (1998).
- 48) H. F. Poulsen, L. Gottschalck Andersen, T. Frello, S. Prantontep, N. H. Andersen, S. Grabe, J. Madsen, A. Abraham-

sen, M. D. Bentzon and M. von Zimmermann: Physica C315, 254 (1999).

- 49) W. Reimers, M. Broda, G. Brusch, D. Dantz, K.-D. Liss, A. Pyzalla, T. Schmackers and T. Tschentscher: J. Nondestruct. Evaluation 17, 129 (1998).
- 50) R. Fisker, H. F. Poulsen, J. Schou, J. M. Carstensen and S. Garbe: J. Appl. Cryst. **31**, 647 (1998).
- 51) O. V. Mishin, E. M. Lauridsen, N. C. Krieger Lassen, G. Brückner, T. Tschentscher, B. Bay, D. Juul Jensen and H. F. Poulsen: J. Appl. Cryst. 33, 364 (2000).
- 52) H. F. Poulsen, S. Garbe, T. Lorentzen, D. Juul Jensen, F. W. Poulsen, N. H. Andersen, T. Frello, R. Feidenhans'l and H. Grrafsma: J. Synchrotron Rad. 4, 147 (1997).