6600s

放射光高分解能光電子分光による カーボンナノチューブの電子状態

石井廣義 東京都立大学大学院理学研究科 〒192-0397 東京都八王子市南大沢 1-1

要旨

単層カーボンナノチューブ(SWNT)は、その1/3が理想的な1次元導体であることから、朝永-ラッティンジャー液 体(TLL)状態が実現していることが期待される。筆者らは、SWNTの1次元電子状態を放射光利用の高分解能光電子 分光によって調べた。その結果、フェルミ準位近傍の強度およびフェルミ準位直上の強度は、それぞれ結合エネルギーお よび温度への冪依存性を示した。これは、SWNTにおいてTLL状態が実現していることの直接的な証拠である。本稿 では、SWNTとTLL状態の特徴について簡単に説明した後、カーボンナノチューブの光電子分光の結果を紹介する。

1. はじめに

1.1 カーボンナノチューブの電子状態

単層カーボンナノチューブ(SWNT)は, Fig.1に描いた1枚の2次元グラフェンシート(炭素原子からなる単原子層の2次元六員環網構造)の原点Oと任意の格子点A(n, m)を重ねるように丸めてつなぎ合わせたチューブ状物質である^{1,2)}。このとき原点Oと格子点Aを結ぶカイラルベクトルC_h(チューブ軸に垂直に円筒面を一周するベクトル)は,基本並進ベクトルa₁とa₂を用いて,

$$\boldsymbol{C_h} = \boldsymbol{n}\boldsymbol{a}_1 + \boldsymbol{m}\boldsymbol{a}_2, \tag{1}$$

と表される。このベクトルによってチューブの直径と螺旋 角は一義的に指定され,螺旋角によってアームチェア型 (*n*, *n*),ジグザグ型(*n*, 0),カイラル型(*n*, *m*)の3種 類のチューブに分類される^{1,2)}。**Fig. 2**に,アームチェア 型(10, 10) SWNTの模型³⁾を示す。

バンド構造は強束縛近似で計算されている²⁾。**Fig. 3**の 左側にアームチェア型 (10, 10) SWNT (アームチェア型 は金属)のバンド構造を,右側に状態密度曲線を示す。重 要な点は,波数ベクトル**k**の円周方向成分が周期境界条 件

$$C_h \cdot k = 2\pi j \ (j は 整数)$$
 (2)

によって量子化され,チューブ軸方向の波数ベクトルのみ が連続的になるということである²⁾。その結果,SWNT の電子状態には2つの特徴が現れる。

- 1次元 van Hove 特異点(1D VHS)による発散
 (Fig. 3 の右図に示したスパイク状構造)が状態密度 に現われる。これは、光吸収分光^{4,5)}や走査型トンネ ル分光⁶⁾によって実際に確認されている。
- (2) SWNT の性質は、(n, m) と表されるカイラル指数
 によって決められる。(2n+m)/3 が整数のとき金属

SWNT に,残りは半導体 SWNT になる²⁾。そして, 理想的な1次元導体である金属 SWNT においては, 朝永-ラッティンジャー液体(TLL)状態が実現して いることが予想される⁷⁻¹¹⁾。

1.2 1次元系の光電子分光

通常の3次元金属の物理的性質は、フェルミ液体(FL) 論によって良く記述される。しかし、系の次元が1次元 になると、FL 状態は僅かな電子間相互作用でも1次元特 有の大きな量子ゆらぎのために不安定となり、代わって TLL 状態が出現することが知られている^{12,13)}。このTLL

Figure 1. Extended honeycomb lattice of a nanotube. The vectors C_h and T are the chiral vector and translational vector, respectively.

Figure 2. Schematic illustration of a (10, 10) armchair SWNT.

Figure 3. Energy dispersion and density of states for a (10, 10) armchair SWNT. When a SWNT sample is placed on a metal substrate, the Fermi level is shifted to some energy μ because of doping of carriers to a SWNT.

状態は、スピンと電荷の分離や物理量の冪乗依存などの異 常な振舞いが特徴的であるが、最近まで数理上の状態にす ぎないと思われていた。近年、有機伝導体の発見やナノ メートルサイズの超微細加工技術による量子細線などの開 発を契機に、1次元電子系の実験的研究が活発になってき た¹³⁻¹⁷⁾。

光電子分光は E_F 近傍のスペクトル関数を直接測定でき るので、TLL 状態の検証にとって有力な実験手段の一つ である。今まで有機伝導体(TTF-TCNQなど),ブルー ブロンズ (K_{0.3}MoO₃ など),人工量子細線 (Si 基板上に Au原子を並べたもの)などの擬1次元系に対して多くの 光電子分光研究が実行されてきた¹⁷⁻²³⁾。実際,ほとんど の物質でフェルミ端の消失が観測され、光電子分光データ は、これらの擬1次元系でTLL状態が実現している可能 性を示唆した。しかしながら、観測された指数 α (α >1) は、ハバード模型による理論的な上限値(a=1/8)より はるかに大きく18)、試料の不均一性や光電子放出におけ るエネルギー損失24)などが問題となった。また、ほとん どの物質で、電子格子相互作用や1次元鎖間相互作用に よってスペクトル形状が著しく変化し、E_Fにギャップや フェルミ端が出現した17-19)。この様に、今までの擬1次 元物質において,理想的な1次元電子系が実現されてい るとは言い難く, TLL 的振舞いの明確な証拠は得られて いない。

金属 SWNT における TLL 状態に関する実験研究は, Bockrath ら²⁵⁾によって最初に行われた。彼らは金属-SWNT 接合と SWNT-SWNT 接合の輸送特性実験によっ て、温度を関数としたコンダクタンスやバイアス電圧を関 数とした微分コンダクタンスに冪異常を観測し²⁵⁻²⁷⁾,前 者(後者)をFL-TLL(TLL-TLL)間のトンネルコンダ クタンスによると解釈した。しかし、低温領域でのコンダ クタンスの振舞いは、クーロン障壁(ナノサイズ程度の導 電性微粒子間を電子が移動するときに現れる抑制効果)に よって不明瞭になることや、FL-FL 接合のコンダクタン スでも見かけ上冪異常が現れることが指摘されていること から²⁸⁾,試料の質の問題とあわせ、依然として統一的な 理解は得られていない^{29,30)}。それ故、直接的な実験手段に よって電子状態を観測することが必要である。

SWNT の場合,有機伝導体で問題となったパイエルス 転移(格子ひずみによる不安定性は1次元系で一般的に 生じる)は,重要でないことが理論的に示され^{2,9)},金属 SWNT はその軸方向に沿った理想的な1次元導体と見な すことができる^{1,2,7-11)}。そこで,筆者らは輸送特性測定の ような実験原理からくるあいまいさを持たない光電子分光 法によって,SWNT の電子状態を直接調べることにし た³¹⁾。

2. 価電子帯光電子スペクトルと実験方法

カーボンナノチューブの光電子分光は,幾つかのグルー プによって実行されているが^{32,33)},現在のところ,カーボ ンナノチューブの電子状態の特徴である 1D VHS 構造さ えも観測されていない。Fig. 4 に,光電子スペクトルの 試料依存性を示す。スペクトル(a) (レーザー蒸発法で作 製された純度90%以上の試料)は,後に述べるように

Figure 4. Photoemission spectra of SWNT samples prepared by different methods. (a) The spectrum for the sample prepared by the laser vaporization method. The purity was estimated to be higher than 90%. (b) The spectrum for the sample with the purity of \sim 70%. The sample was prepared by the laser vaporization method. (c) The spectrum for the sample prepared by the chemical vapor deposition method (CVD). (d) The spectrum for the sample prepared by the arc discharge method. The purity was estimated to be \sim 20%.

1D VHS 構造による S₁, S₂, M₁の構造が見られる。しか し、スペクトル(b)と(d) (レーザー蒸発法とアーク放電 法で作製された低純度試料)では明瞭に観測されず、ま た,広いチューブ直径分布を持つ HiPCO(化学気相成長 法で作製された市販品)のスペクトル(c)でも明瞭に観測 されていない。このように, SWNT 試料のスペクトル は, 試料作製方法, 精製処理, 純度の違いによって異な り、光電子分光では一定の直径を持ったチューブだけから なる高純度試料が必要であることがわかる。そこで、筆者 らは SWNT の直径をある程度制御できるレーザー蒸発 法^{4,34)}を採用した。この実験で使用した SWNT-A (A1 と A2) とSWNT-B 試料は、炉の温度を1200℃と1050℃に してNiCo触媒を使って作製された4,31)。最終的に紙状に 精製された試料はバッキー・ペーパーと呼ばれ、約30 µm の厚さである。試料中のSWNTは、透過型・走査型電子 顕微鏡による観察から、数十本の SWNT から構成される バンドル(又はロープ)状になっており、このバンドルは 無秩序な方向を向き,長さは数 µm であることが確認され t^{31}

Fig.5は、SWNT 試料とグラファイトの価電子帯全体の光電子スペクトルである。実験は、高エネルギー加速器研究機構フォトンファクトリー(KEK-PF)のビームラ

Figure 5. Photon energy dependence of photoemission spectra of SWNTs. The spectrum of graphite is also shown.

インBL-11Dと、広島大学放射光科学研究センター (HiSOR)のBL-1³⁵⁾の放射光を利用して行った。SWNT 試料は銅基板上に置き,試料表面の清浄化は,試料を200 ℃以上に加熱することで行った。図に見られる光子エネル ギー依存性(光子エネルギーの増加とともに,低結合エネ ルギー側で強度が減少する)は、Cの2s,2p電子の光イ オン化断面積の違いによる。価電子帯全体の構造は,hv>65 eVのスペクトルで見ることができる。3 eV と 8 eV の周りのピーク構造は、それぞれπと σ バンドである。 また,19 eV の周りの台形状構造は C 2s バンドである。 これらの構造は、グラファイトのそれに全体として似てい る。

3. 1D VHS 構造

SWNT 試料とグラファイトのスペクトルの違いは, E_F 近傍のエネルギー領域に現われた。Fig. 6 に示した SWNT 試料のスペクトルには,結合エネルギー0.45, 0.75, 1.0 eV に S_1 , S_2 , M_1 と名づけた 3 つのピーク構造が 明瞭に見られる。一方,グラファイトのスペクトルでは, このエネルギー領域にピーク構造は見られない。1D VHS 構造は光吸収スペクトルで観測されているので,まず,光 吸収スペクトルとの比較を行う。光吸収スペクトルでは, 光学遷移が E_F をはさんで対称的な位置にある状態密度の 1D VHS ピーク間で起きるので^{4,5)},図では,光吸収スペ クトルのエネルギースケールを50%縮小して描いた。さ

Figure 6. Photoemission spectra of SWNTs and graphite near E_F measured with an energy resolution of 50 meV at $h\nu = 65$ eV. These spectra ware measured at KEK–PF. The optical absorption spectrum and the calculated densities of states (DOS) for SWNTs with the indices (10, 10) and (16, 2) are also shown.

らに、SWNT が銅基板によってドーピングされ、電子構造のエネルギーシフトが生じているので⁶⁾、光吸収スペクトルを0.1 eV だけ高結合エネルギー側へシフトさせて示した。図から明らかな様に、光電子スペクトルの S_1 、 S_2 および M_1 ピークは、光吸収スペクトルの0.7 eV、1.3 eVおよび1.8 eV ピークに対応している。

次に、光電子スペクトルを強束縛近似に基づいて計算さ れた π バンド構造と比較する。電子構造は SWNT の直径 に依存するので、まず、筆者らはSWNT-A1 試料中の SWNTの平均直径を、ラマン散乱スペクトルのAlgブ リージング・モード周波数(チューブの半径方向の振動 モード)から1.37 nm であると見積もった。例えば、1.37 nm 近くの直径を持った SWNT の場合,カイラル指数 (10,10)を持つ金属SWNTは直径1.375 nmで,指数 (16,2)の半導体 SWNT は直径1.357 nm である。Fig. 6 の下図に、上記のカイラル指数を持つ SWNT の状態密度 曲線³⁾を示した。図からわかる様に、S₁、S₂ピークは半導 体 SWNT の 1D VHS 構造に, M₁ピークは金属 SWNT の1D VHS 構造に対応している。しかし、観測された3 つのピークは,SWNT のバンド計算結果に見られるスパ イク構造と比較して幅が広い。これは試料中の SWNT に 直径分布があるためで、直径分布がピーク構造を不明瞭に していると考えられる。そこで, 直径分布を考慮して, SWNT 試料の光電子スペクトルを解析してみる。まず,

Figure 7. (a) Assumed distribution curve for the SWNT-A1 sample. The sample consists of metallic and semiconducting tubes. (b) Comparison between the experimental and calculated photoemission spectra of the SWNT-A1 and SWNT-B samples. The densities of states D(E), calculated taking into account the diameter of SWNTs, are indicated by solid lines.

Fig. 7(a)に示した様に,SWNTの直径が1.37 nmの平均 値 d_0 の周りに標準偏差 σ_d を持つガウス関数に従って分布 していると仮定する⁵⁾。カイラル指数(n_1, n_2)を持つ SWNTの直径を $d_{n1, n2}$,状態密度を $\rho_{n1, n2}(E)$ とすれば, 試料全体の状態密度D(E)は,

$$D(E) \propto \sum_{n1, n2} \rho_{n1, n2}(E) \exp\left[-(d_{n1, n2} - d_0)^2 / 2\sigma_d^2\right]$$
(3)

と書ける。ここで、個々の SWNT の状態密度 $\rho_{n1,n2}(E)$ は、重なり積分 $\gamma = 2.9 \text{ eV}$ で計算された³⁾。スペクトル は、パラメータとして標準偏差 (σ_d)、ブロードニング幅 (Γ)、エネルギーシフト量 (E_s)を用い、ガウス型曲線 (エネルギー分解能関数に対応し、2 σ =50 meV)と、ロー レンツ型曲線(光電子スペクトルの寿命幅などに対応し、 2 Γ の幅)によって、D(E)をブロードにさせることによ って計算される。**Fig. 7(b)**に、パラメータとして σ_d = 0.10 nm, Γ =20 meV, $E_{\rm S}$ =0.10 eV を使用して計算された スペクトルを実線で示した。3 つのピークのエネルギー位 置及び形状は,計算されたスペクトルによって良く再現さ れている。SWNT-B 試料の場合,チューブの平均直径は ラマン散乱実験から1.25 nm であることが見積もられてい る。光電子スペクトルは, d_0 =1.25 nm, σ_d =0.14 nm, Γ = 25 meV, $E_{\rm S}$ =0.10 eV を使って計算したスペクトルによっ て良く再現されている。以上の比較から,観測された3 つのピーク構造は,占有電子状態密度中の1D VHS から 生じたスパイク構造によると考えられ,観測されたスペク トルは SWNT の電子状態を示していることが確認され た。

4. TLL 状態

Fig. 7(b)からわかる様に、観測された光電子放出強度 は、計算スペクトルと比較して E_F 近傍で急激に減少し、 結合エネルギーの減少とともに計算スペクトルからのずれ が増大している。筆者らは E_F 近傍のスペクトルの詳細な 形状を見るために、SWNT-A2 試料の高分解能光電子ス ペクトルを、hv = 30 eV、エネルギー分解能13 meV で測 定した。結果を Fig. 8(a)に示す。10 K で測定されたス ペクトルでは、 E_F 近傍の強度が消失している。温度が上 がると、 E_F より上のエネルギー領域に裾構造が現われ、 E_F 直上強度は急激に増大した。これらの振舞いは、Fig. 8(b)に示したフェルミ端を持つ金(通常の3次元金属) のスペクトルのものと全く異なっている。

ドープされた金属 SWNT における TLL 状態の状態密 度は,

$$\rho(\omega) \propto |\omega|^{\alpha} \tag{4}$$

で与えられる。ここで,指数αのバルク位置での値は, 相互作用の大きさで決まるラッティンジャー・パラメータ (g)を用いて,

$$\alpha = (g + g^{-1} - 2)/8 \tag{5}$$

である⁷⁻¹¹⁾。**Fig. 8(c)**は Yoshioka によって計算された金 属 SWNT における TLL 状態の状態密度と光電子スペク トルを示す。これらは、ボゾン化法^{12,13)}によって*g*=0.2 を使って得られた¹¹⁾。*T*=0 K における計算された光電子 スペクトルは、 $I(\omega, 0) \propto |\omega|^{0.4}$ であり、 $E_{\rm F}$ 直上強度の温 度変化は、 $I(E_{\rm F}, T) \propto T^{0.4}$ となり、それぞれ結合エネル ギーおよび温度 *T* に対して冪依存性が予想されている。

Fig. 8からわかる様に,観測されたスペクトルの特徴 は,TLL状態の理論計算結果と矛盾せず,スペクトルと ω^{α} との比較から, α =0.46±0.10が得られた。10Kのス ペクトルと比較するため,エネルギー分解能関数によって $\omega^{0.46}$ をブロードにさせたスペクトル関数を**Fig. 8(a)**に示

Figure 8. (a) High-resolution photoemission spectra of the SWNT -A2 sample near $E_{\rm F}$ measured at T=10 K-310 K with an energy resolution of 13 meV. The spectra were measured at HiSOR. (b) Photoemission spectra of Au (3D conventional metal). (c) Calculated densities of states (DOS) and photoemission spectra (PES) for the TLL state in the metallic SWNT.

した。 $E_{\rm F}$ 近傍の強度減少は、計算スペクトルによって良 く再現されている。次に、**Fig.**9に $E_{\rm F}$ 直上強度の温度変 化を示した。図からわかる様に、 $E_{\rm F}$ 直上強度は、 T^{α} (α = 0.48±0.08)に比例する(40 K以下では、13 meV のエ ネルギー分解能によってスペクトルがぼけるため、 $T^{0.48}$ からずれる)。注目すべき重要な点は、スペクトル関数と ほとんど同じ指数 α が、実験精度内で得られたことであ る。 α =0.46からg=0.18が導かれる。Egger と Gogolin は、カイラル指数(10,10)を持った長さ3 μ mのSWNT (このチューブの直径は、SWNT-A2 試料中のチューブの 平均直径とほとんど等しい)に対して長距離クーロン相互 作用を考慮した理論計算を行い、 α ≈0.46を得ている⁹)。 現在の実験で得られた指数 α は、この理論計算の見積も りと良く一致しており、輸送特性実験から得られた結 果²⁵⁻²⁷⁾とも矛盾しない。

上に述べた様に、現在の光電子スペクトルは TLL 的振

Figure 9. Temperature dependence of the ratio of the photoemission intensity at $E_{\rm F}$ to the intensity of the S₁ peak. The solid line indicates the function $T^{0.48}$. The resolution limit (a horizontal dashed line) represents the intensity at $E_{\rm F}$ in the spectral function obtained by broadening $\omega^{0.46}$ by the energy resolution function with an energy resolution of 13 meV.

舞いを示している。ただし,この実験で使用した試料は, 直径,カイラリティー,長さが異なった SWNT からなっ ていて,金属,半導体 SWNT の混合物である。さらに, 数十本の SWNT が束になったバンドル状である。既に述 べた様に,擬1次元系の光電子分光では,単結晶試料を 使用したにもかかわらず,試料の不均一性や欠陥が結果に 重大な影響をおよぼし,TLL 状態の明確な証拠が得られ ていない。ところが,SWNT の場合は,このような不均 ーな SWNT であるにもかかわらず,光電子スペクトルは 1本の SWNT に対する理論計算結果と良い一致を示し た。そこで,SWNT 間相互作用とSWNT の不均一性 が,スペクトルにどの程度影響をおよぼすのか考えてみ る。

(1) SWNT 間相互作用:バンドル状 SWNT を試料と したコンダクタンス測定でも,TLL 的振舞いが観測され ているが²⁵⁾,バンドル中の SWNT が,SWNT 間相互作 用のない孤立した SWNT の電子状態であるということは 自明ではない。Maarouf らは,異なる直径およびカイラ リティーを持った SWNT からなり,金属と半導体 SWNT から構成されたパンドルのバンド構造を計算して いる³⁶⁾。彼らは,隣り合う SWNT の固有状態が $E_{\rm F}$ 近傍 でともに同じ運動量を持たないかぎり,SWNT 間のカッ プリングは無視できること,直径とカイラリティーに分布 を持った金属 SWNT だけから構成されたバンドルの場合 でさえ,バンド構造は $E_{\rm F}$ 近傍でほとんど変化を示さない ことを指摘した³⁶⁾。現在の試料では,SWNT のおよそ2/ 3は半導体であり,直径とカイラリティーは不均一であ る。そのため、SWNT 間相互作用は、さらに抑えられて いると考えられ、結果として、現在の光電子スペクトル は、個々のSWNT の電子状態を反映していると理解でき る。

(2) 直径と長さの不均一性:理論計算によれば,金属 SWNTの低エネルギー特性は,そのカイラリィティーに は関係せず,SWNTの半径(R)及び長さ(L)によって 決定される。おおざっぱに言うと,ラッティンジャー・パ ラメータgは, $[\ln (L/R)]^{-1/2}$ に比例する^{9,37)}。パラメー タgの $R \ge L$ へのこのような弱い依存性を考えれば, α に対する直径及び長さ分布の影響は無視できる。

上に述べた様に,不均一な SWNT 試料であったからこ そ SWNT 間相互作用が抑えられ,さらに不均一な直径と 長さの影響も小さいため,現在の光電子スペクトルは個々 の SWNT の電子状態の平均を示していると理解できる。 筆者らは,310 K から40 K までの温度範囲で,SWNT に おいて TLL 状態が実現しているという直接的な証拠を見 つけたと考えている。また,指数 α のこのような大きな 値は,長距離クーロン相互作用が,SWNT において重要 な役割を果たしていることを示している。

おわりに

筆者らは数年前から He 放電管光源を使用してカーボン ナノチューブの光電子分光を行っていた。初期の低純度試 料ではチューブ固有の構造が全く観測されなかったが,片 浦弘道氏らが作製した高品質"metrotube"で,初めて SWNT 固有の構造が観測された。しかし,He 放電管から 飛んでくる He イオンと水によって SWNT の破壊や試料 表面汚染が起こるため VHS 構造が徐々に不鮮明になっ た。そのため,データの再現性も得られなかった。そこ で,高分解能かつ清浄光源である放射光を利用した実験 を,KEK-PF(課題番号2002G0185)と HiSOR(課題番 号 02-A-12)に申請した。KEK-PFと HiSOR のスタッ フの皆様に感謝します。

なお,ここで紹介した研究は,東京都立大学の片浦弘道 氏(現・産総研),塩澤秀次氏(現・広島大),大坪英雄氏, 高山泰弘氏,宮原恒昱氏,鈴木信三氏,阿知波洋次氏,奈 良女子大学の吉岡英生氏,フォトン・ファクトリーの仲武 昌史氏(現・広島大),広島大学の成村孝正氏,東口光晴 氏,島田賢也氏,生天目博文氏,谷口雅樹氏の方々との共 同研究による。

参考文献

- 斎藤弥八,坂東俊治:カーボンナノチューブの基礎(コロ ナ社,1998年).
- R. Saito, G. Dresselhaus and M. S. Dresselhaus: *Physical Properties of Carbon Nanotubes* (Imperial College Press, London, 1998).
- 丸山茂夫:Webページ (http://www.photon.t.u-tokyo.ac.jp /~maruyama) に、チューブの模型を描くソフトや、カイ

ラル指数(40,40)までのチューブの状態密度曲線が掲載 されている。

- H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki Y. Ohtsuka and Y. Achiba: *Synthetic Metals* 103, 2555 (1999).
- M. Ichida, S. Mizuno, Y. Tani, Y. Saito and A. Nakamura: J. Phys. Soc. Jpn. 68, 3131 (1999).
- J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley and C. Dekker: *Nature* **391**, 59 (1998).
- 7) R. Egger and A. O. Gogolin: Phys. Rev. Lett. 79, 5082 (1997).
- C. Kane, L. Balents and M. P. A. Fisher: *Phys. Rev. Lett.* 79, 5086 (1997).
- 9) R. Egger and A. O. Gogolin: Eur. Phys. J. B 3, 281 (1998).
- 10) H. Yoshioka and Y. Okamura: J. Phys. Soc. Jpn. 71, 2512 (2002).
- 11) H. Yoshioka: *Physica E* 18, 212 (2003).
- 12) 川上則雄,梁成吉:共形場理論と1次元量子系(岩波書店, 1997年).
- 13) 川上則雄:1次元電子系の数理(岩波書店, 2002年).
- 14) 鹿児島誠一,三本木孝,長沢 博,高橋利宏:低次元系導 体(裳華房,2000年).
- 15) J. Voit: Rep. Prog. Phys. 57, 977 (1994).
- A. E. Mattsson, S. Eggert and H. Johannesson: *Phys. Rev. B* 56, 15615 (1997).
- M. Grioni and J. Voit: *Electronic spectroscopies applied to low-dimensional materials*, edited by H. P. Hughes and H. I. Starnberg, 209 (Kluwer Academic, Dordrecht, 2000).
- 18) 藤森 淳, 関山 明:固体物理 30,763 (1995).
- 19) A. Sekiyama, A. Fujimori, S. Aonuma, H. Sawa and R. Kato: *Phys. Rev. B* 51, 13899 (1995).
- 20) F. Zwick, D. Jerome, G. Margaritondo, M. Onellion, J. Voit and M. Grioni: *Phys. Rev. Lett.* 81, 2974 (1998).
- G.-H. Gweon, J. W. Allen, R. Claessen, J. A. Clack, D. M. Poirier, P. J. Benning, C. G. Olson, W. P. Ellis, Y.-X. Zhang, L. F. Schneemeyer, J. Marcus and C. Schlenker: *J. Phys. Cond. Matt.* 8, 9923 (1996).
- 22) J. D. Denlinger, G.-H. Gweon, J. W. Allen, C. G. Olson, J. Marcus, C. Schlenker and L.-S. Hsu: *Phys. Rev. Lett.* 82, 2540 (1999).
- 23) P. Segovia, D. Purdie, M. Hengsberger and Y. Baer: *Nature* 402, 504 (1999).
- 24) R. Joynt: Science 284, 777 (1999).
- 25) M. Bockrath, D. H. Cobden, J. Lu, A. G. Rinzler, R. E. Smalley, L. Balents and P. L. McEuen: *Nature* 397, 598

(1999).

- 26) Z. Yao, H. W. C. Postma, L. Balents and C. Dekker: *Nature* 402, 273 (1999).
- 27) H. W. C. Postma, M. de Jonge, Z. Yao and C. Dekker: *Phys. Rev. B* 62, R10653 (2000).
- 28) E. B. Sonin: Physica E 18, 331 (2003).
- 29) Z. Yao, C. Dekker and P. Avouris: Appl. Phys. 80, 147 (2001).
- 30) M. Bockrath: Nature 426, 511 (2003).
- 31) H. Ishii, H. Kataura, H. Shiozawa, H. Yoshioka, H. Otsubo, Y. Takayama, T. Miyahara, S. Suzuki, Y. Achiba, M. Nakatake, T. Narimura, M. Higashiguchi, K. Shimada, H. Namatame and M. Taniguchi: *Nature* 426, 540 (2003).
- 32) S. Suzuki, Y. Watanabe, T. Kiyokura, K. G. Nath, T. Ogino,
 S. Heun, W. Zhu, C. Bower and O. Zhou: *Phys. Rev. B* 63, 2454181 (2001).
- 33) P. Chen, X. Wu, X. Sun, J. Lin, W. Ji and K. L. Tan: *Phys. Rev. Lett.* 82, 2548 (1999).
- 34) T. Wakabayashi, D. Kasuya, H. Shiromaru, S. Suzuki, K. Kikuchi and Y. Achiba: Z. Phys. D 40, 414 (1997).
- 35) 島田賢也:放射光 16,17 (2003).
- 36) A. A. Maarouf, C. L. Kane and E. J. Mele: *Phys. Rev. B* 61, 11156 (2000).
- 37) A. A. Odintsov and H. Yoshioka: *Phys. Rev. B* 59, R10457 (1999).

石井廣義

著者紹介

東京都立大学大学院理学研究科 E-mail: ishii@comp.metro-u.ac.jp 専門:光物性実験

略歷:

1979年 東京都立大大学院博士課程単位取得退学 東京都立大学理学部助手

1993年 理学博士

1998年 東京都立大学大学院理学研究科 助教授

Electronic states of carbon nanotubes studied by high-resolution photoemission spectroscopy using synchrotron radiation

Hiroyoshi ISHII Graduate School of Science, Tokyo Metropolitan University Minami-Ohsawa 1–1, Hachioji, Tokyo 192–0397, Japan

Abstract

We have succeeded in observing one-dimensional electronic states in single-wall carbon nanotubes (SWNTs) by high-resolution photoemission spectroscopy using synchrotron radiation. The spectral function near the Fermi level (E_F) and the intensities at E_F are found to behave as ω^{α} and T^{α} , respectively, where ω and T are the binding energy measured from E_F and temperature, respectively. The exponent α is found to be 0.46–0.48. This observation is direct evidence that a Tomonaga-Luttinger liquid state is realized in SWNT where the long-range Coulomb interaction plays an essential role.