

要 旨 軟X線放射光による内殻共鳴励起は、その局在性ゆえに選択的な化学結合切断の可能性を秘めている。我々 は特定の化学結合を自在に切断することができる「分子メス」の実現を目指して、これまで様々な分子系で内殻励起イオ ン脱離反応の研究を行ってきた。特にエステル基を持つ有機分子、ポリメチルメタクリレート薄膜や自己組織化単分子膜 は、C1s、O1s 両領域で顕著なサイト選択的脱離反応を引き起こすことを見出した。その励起状態依存性を中心に、内殻 励起脱離反応の特徴やサイト選択性発現のメカニズムについて検討する。

1. はじめに

軟 X 線領域の放射光を用いた研究は,内殻電子遷移の 特徴を利用してこれまで数多くなされている。なかでも吸 収分光 (XAS, XAFS) や光電子分光 (XPS),オージェ 電子分光 (AES)等といったエネルギードメインでの分 光法は,分析手法としてはもはやスタンダードなものとし て定着した。一方で分子分光をベースとした内殻励起分子 の解離や脱離反応も気相や表面吸着分子,凝縮分子,高分 子等で幅広く研究されているが,その内殻励起の特異性が その後の反応ダイナミクスにどのように反映しているかは いまだ未整理のままであるように思われる。

そもそも内殻電子励起は、内殻電子自身が分子内で非常 に局在していることから、価電子励起とは異なる局所的な 電子遷移であり、その結合エネルギーは化学結合環境を含 めた原子種固有のものである。このため内殻励起によって 分子内の特定の原子を選択的に励起することができる。こ の内殻励起は高エネルギーでの遷移過程であるため、非常 に早い時間領域(<10⁻¹⁴ s)での失活が起こる。特に第2 周期に代表される軽元素では無輻射失活である Auger 崩 壊(2電子遷移)が励起原子近傍で支配的に起こり、多く の場合2正孔状態を生成する。この Auger 終状態自身も また不安定であり、2正孔間のクーロン反発が引き金とな るイオン性解離もしくは脱離の分解過程へと続く。この内 殻励起に起因したイオン性解離は、初期共鳴励起の情報、

すなわちどの原子からどの反結合性軌道へ励起したかということとその局所性,を保持し得ることを示しており,内 殻共鳴励起を利用したサイト選択的な化学結合切断の可能 性を示唆している。これは化学反応の制御-分子内の特定 の化学結合を光で自在に切断する「分子メス」(**Fig. 1**) –

Fig. 1 Illustration of the concept of "Molecular Scalpel" where a tunable soft X-ray is used as a scalpel.

を目指した観点からも非常に興味深い現象であるといえ る。

これまで我々はこの内殻電子遷移の局所性と励起サイト 選択性に着目して,種々の表面分子系で内殻励起イオン脱 離反応の研究を進めてきた。特にポリメチルメタクリレート(PMMA)薄膜では,側鎖官能基部の内殻電子を選択 的に特定の反結合性軌道へ共鳴励起すると,イオン脱離は 大きく促進することがわかり¹⁾,PMMAを顕著なサイト 選択的イオン脱離反応を示すプロトタイプとしてこれまで 一連の研究を進めてきた²⁻⁸⁾。又この結果をふまえて PMMAの側鎖と同じエステル基を末端官能基にもつ自己 組織化単分子膜(SAM)を作成し,その内殻励起イオン 脱離反応における励起状態依存性を調べた⁹⁻¹²⁾。本稿では 最近の結果及び考察をふまえて紹介したい。

2. 実験手法

実験は PF BL-7A に飛行時間型イオン質量分析器 (TOF-MS)を装備した真空チャンバーを搬入して行った。

Fig. 2 Schematic drawing of experimental setup for detection of total electrons and desorbing ions, which mainly consists of pulsed SR light (624 ns interval), time-of-flight mass spectrometer (TOF-MS) and data acquisition system. A: ammeter, Amp: fast-preamplifier, Discri: discriminator, MCS/MCA: multichannel scaler and multichannel analyzer. (Bottom) Schematic molecular structures of ester compounds used in this experiment.

Fig. 2の概略図に示しているように,実験手法として一般 的な TOF-MS 計測システムを採用している¹³⁾。全電子収 量(TEY)スペクトルは放射光照射中の試料電流を測定 することによって得ており,ここでは吸収スペクトルと等 価であるとして扱っている。全イオン収量(TIY)スペク トル及び各脱離イオンの部分イオン収量(PIY)スペクト ルは,TOF-MS 検出器を用いて脱離イオンを検出するこ とによって得ているが,TIY の場合はイオンを質量選別 することなく検出し,PIY スペクトルは種々の励起エネ ルギーで質量選別した TOF スペクトルから得た。この TOF スペクトルを得るためには,光もしくはそれに同期 した信号をトリガーにとる必要があるとともに,光照射 (もしくはイオンの脱離)から検出まで数百から数千 ns の インターバルを必要とする。そのため,TOF 測定実験で は PF のシングルバンチ運転によるパルス放射光を利用し ており,図に示すように RF シグナルの1/312分周信号 (624 ns 間隔)をトリガーとして測定している。

試料としては**Fig.2**に示したPMMA 高分子 薄膜 (-[CH₂C(CH₃)COOCH₃]_n-, ~500 Å),メチルエステル 修飾した自己組織化単分子膜(CH₃OCO(CH₂)₁₅S/Au, MHDA SAM),その重水素置換体(CD₃OCO(CH₂)₁₅S/ Au, MHDA-d₃ SAM),エチルエステル修飾 SAM(CH₃ CH₂OCO(CH₂)₁₅S/Au, EHDA SAM)を用いた。SAMの 作成は,各チオールのエタノール溶液にAu(111)表面を 浸すことによる湿式法で行った。図では簡略した形で構造 を示しているが,PMMA 薄膜の場合は立体配位がランダ ムなアタクティックポリマーをスピンコートすることで作 成しており,薄膜中ではランダムな分子配向をしている。 一方,SAMではメチレン鎖が30~40°傾き,末端官能基 を最上表面で配向させた形で単分子膜が形成されている。 これらのことは NEXAFS の偏光依存性から容易に確認す ることができる。

3. 結果と考察

3.1 炭素内殻励起で見られる選択的イオン脱離

Fig. 3 に(a) PMMA 薄膜, (b) MHDA SAM, (c) EHDA SAMの炭素1s領域で測定されたTEYスペクトル及び TIY スペクトルと, TIY を TEY で割ることによって得 られるイオン脱離効率(IDE)スペクトルを示す。TEY での各遷移は図中に示すように帰属でき, PMMA では主 に側鎖官能基によるピークでスペクトルは形成されてお り,SAMでは同様の末端官能基によるピークに加えて Rydberg 遷移や293 eV 周辺でのブロードな σ *共鳴といっ たメチレン長鎖に由来する構造14)で構成されていること がわかる。一方 TIY スペクトルは TEY と異なり,約289 eV に鋭いピークを示すのが大きな特徴である。PMMA のこのピークは、吸収スペクトルでははっきりとしない側 鎖メトキシ部での反結合性軌道である $\sigma^*(O-CH_3)$ への遷 移 (**σ***(**O**−**C**H₃)←**C**1s(**O**CH₃)) に対応することがわかっ ており、この励起でイオン脱離が効率よく起こっているこ とがわかる。この炭素領域での特徴的なピークは SAM で も顕著に現れており、同じσ*共鳴励起と帰属することが できる。これは後の TOF 測定の結果からも検証すること ができる。

各試料で比較してみると、MHDA SAM の σ^* (O-CH₃) における IDE は PMMA に比べておよそ 2 倍増大してい ることがわかる。無配向な PMMA 薄膜に比べて膜最表面 にメチルエステル基を配向させている MHDA SAM で は、その効率が大きくなっていることを示している。一方 EHDA SAM は MHDA に比べおよそ1/4に効率は減少し ている。これは末端官能基がメチルエステルからエチルエ

Fig. 3 Total electron yield (TEY), total ion yield (TIY) and ion desorption efficiency (IDE) spectra of (a) PMMA thin film, (b) MHDA SAM and (c) EHDA SAM in C1s region. Assignments for typical transitions are indicated in each spectrum.

ステルに変わったことで脱離するイオン種が重くなり(後の TOF 測定参照),そのため脱離途中で再中性化反応が 起こりやすくなったためと考えられる。なお、どの試料も 高エネルギーになるにつれて IDE が増加するのは、多正 孔状態を経由することによってイオン脱離が促進されてい るためと考えられる。

この脱離イオン種を調べるために TOF 測定を行い,各 種脱離イオン収量の励起エネルギー依存性(PIY スペク トル)を得た。各試料で得られた代表的なイオン種の PIY スペクトルを Fig. 4 に示す。 PMMA, MHDA SAM 共に O-CH₃ 間の反結合性軌道である σ*(O-CH₃) への共 鳴励起(288.9 eV)でCH⁺_n(n=1-3)イオンが特異的に 脱離していることがわかる。一方 PMMA での OCH+ や MHDA SAM の $C_2H_3^+$ や $C_2H_5^+$ (又はOCH+)といった, 励起先と直接関わりのない部位から脱離したイオンの形状 はほぼ TEY スペクトルと一致しており、吸収量に比例し た脱離しか起こっていない。このようなイオン脱離の選択 性は,反結合性軌道に内殻電子を供与することでその結合 性が弱められ、イオン性解離を促進するという内殻共鳴励 起による選択的結合切断の特徴を如実に示している。又, 脱離量が多い H⁺ イオンでもこの $\sigma^*(O-CH_3)$ 励起で収量 の増大があることが、ブルーシフトしたピークとして見る ことができる。Fig. 4(c)に示す末端メトキシ基の重水素置 換体(MHDA-d₃SAM)での結果から明らかなように,

メトキシ基由来の D⁺ イオンは CD⁺ イオン同様 σ^* (O-CD₃) 励起で効率よく脱離しているのに対し,メチレン鎖 から生じる H⁺ イオンの脱離は TEY スペクトルと同様の 振る舞いを示す。これは、メトキシ基の炭素からその隣の O-C 間反結合性軌道への共鳴励起が内殻励起ゆえに非常 に局所的に起こっており、その後の Auger 崩壊、イオン 性解離・脱離を経ても、励起サイト及びその局所性といっ た初期メモリーが保持されたまま反応が進んでいることを 示している。内殻遷移の特異性が反応ダイナミクスにスト レートに反映した端的な例といえる。

3.2 酸素内殻励起で見られる選択的イオン脱離

酸素領域では内殻共鳴励起特有のサイト選択性がより明 瞭に観測されている¹²⁾。**Fig. 5**には(a) PMMA と(b) MHDA SAM の代表的なスペクトルを示している。最上 段のスペクトルが両試料での TEY スペクトルで,酸素領 域では当然のことながら非常に似通ったスペクトル構造を 示している。中段が CH₃⁺ イオンの,下段が OCH⁺ の PIY スペクトルである。スペクトルから明らかなよう に,ピークAで CH₃⁺ が選択的に脱離しており,ピーク B では OCH⁺ の脱離が増大する。ピークA はエーテル結合 部位の酸素 1s からメトキシ基の反結合性軌道への遷移 ($\sigma^*(O-CH_3) \leftarrow O1s(OCH_3)$)と帰属でき,この共鳴励起 によってメチル基のイオン性解離が促進されている。又,

Fig. 4 Typical PIY spectra of (a) PMMA, (b) MHDA SAM, (c) MHDA-d₃ SAM and (d) EHDA SAM in C1s region. The TEY spectra are also shown at tops. Spectra were measured at the SR incidence angle of 20° from the surface. Intensities of spectra are multiplied approximately by numeral values given in right sides.

ピークBでは $\sigma^*(C-OCH_3) \leftarrow O1s(OCH_3)$ 遷移が起こるこ とでメトキシ基のイオン性解離を引き起こしており,エネ ルギーの安定性からそのフラグメントである OCH⁺ が検 出されている(OCH₃⁺ \rightarrow OCH⁺ +H₂)。このように照射す る軟 X 線エネルギーをわずか数 eV 変えるだけで,異な る化学結合を選択的に効率よく切断できることがわかる。 又,炭素領域と同様に MHDA SAM では PMMA に比べ 選択性がはるかに向上していることが,特に CH₃⁺ イオン の比較から明らかである。

3.3 選択的イオン脱離過程の定量的評価

これまで述べてきた内殻共鳴励起の特徴であるサイト選 択性は、必ずしもどのイオン脱離反応にも反映されるとは 限らない。この選択性を妨げる主な要因として2つ挙げ ることができる。軟X線の照射によって生成された内殻 励起状態は、直ちに崩壊してAuger終状態に至るが、こ

Fig. 5 TEY spectra and representative PIY spectra of CH_3^+ and OCH^+ for (a) PMMA and (b) MHDA SAM in O1s region. Spectra were measured at the SR incidence angle of 20° from the surface. Intensities of spectra are multiplied approximately by numeral values given in right sides. (Bottom) Schematic drawing of site-selective bond breaking in methylester group induced by resonant core excitations.

の Auger 状態も高励起状態(通常の共鳴励起では1価イ オンの励起状態)であるため、速いエネルギーの緩和(非 局在化)が容易に起こると予想される。この緩和、すなわ ち統計的なエネルギーの再分配によって引き起こされたイ オン性の解離過程では、どの脱離イオンも励起状態の性質 に左右されることなく単に吸収強度に比例した収量をもつ ことになる。2つ目の要因として、表面分子系ではいわゆ るX線誘起電子刺激脱離(XESD)が挙げられる^{7,15)}。例 えば凝縮試料に軟X線を照射すると電子が放出される が、それは表面分子においてのみ起こる現象ではなく、当 然その深部でも吸収が起こり Auger 電子やその2次電子 が放出される。そういったバルク中で生成した高エネル ギー電子は他の分子に衝突して電子遷移を引き起こし、結 合解離に至ることができる。特に最表面で生成したイオン フラグメントは容易にイオンのままで脱離することにな る。こういった緩和過程や XESD 過程は内殻共鳴励起に よる原子や結合の選択性といった初期メモリーを消失させ るとともに、ランダムな解離過程を引き起こすことにな り、結果としてイオンスペクトルは吸収スペクトルを単に 模倣したものになる。このような間接過程によるイオン脱

Fig. 6 (a) An example of peak-fitting analysis for TEY spectrum of MHDA SAM in C1s region. Slash-marked red peak corresponds to the component of $\sigma^*(O-CH_3)$ excitation. (b)-(c) Typical examples of quantitative estimation for PIY spectra (\bigcirc) of (b) CH₃⁺ of PMMA, (c) CH₃⁺ of MHDA SAM and (d) D⁺ of MHDA-d₃ SAM. Shaded sky-blue peaks are intensity-modified PIY spectra of each CH⁺ (CD⁺ for (d)), which correspond to the components from direct dissociation processes at $\sigma^*(O-CH_3)$ ($\sigma^*(O-CD_3)$ for (d)) excitations. Dotted red lines are modified TEY spectra for each sample and shaded red peaks are $\sigma^*(O-CH_3/O-CD_3)$ components of the TEY spectra, which correspond to the components from indirect dissociation. Green lines are reproduced PIY spectra by composition of the modified PIY and TEY spectra.

離は実際には非常に優勢な過程で,直接過程によるイオン 量を遙かに凌駕することがあり¹⁶⁾,内殻励起特有の直接 的イオン脱離現象に関する情報を曖昧にしてしまう。しか しながらこれまで顕著な選択性を示すイオン脱離反応でそ ういった議論はあまりなされておらず,この間接過程の寄 与を踏まえた定量的な議論が,今後サイト選択性を考察し ていく上で必要である。スペクトルに見られる直接過程と 間接過程の成分比には,脱離過程まで含めての内殻遷移の 局所性の他,分子内及び分子間の環境など様々な要因が複 雑に寄与していると考えられるが,ここでは上記炭素領域 での PIY 測定 (**Fig. 4**)の結果をもとに考察する¹¹。

間接過程を経て脱離するイオンは先に述べたように吸収 強度に比例すると考えると、そのスペクトルは TEY と同 形と見なすことができる。一方直接過程によるサイト選択 的成分は、例えば Fig. 4 の CH⁺ 又は CD⁺ イオンで見られ るような特定の共鳴励起でのみピークをもつことになる。 従って測定された各脱離イオンの PIY スペクトルを TEY スペクトルと CH⁺ (CD⁺) イオンの PIY スペクトルとの 合成で再現することにより、そのイオン脱離をもたらす直 接過程と間接過程を評価することができる。Fig. 6(a)に MHDA SAM の炭素領域での TEY スペクトルのフィッ ティング例を示す。斜線成分がサイト選択性を示す σ^* 励 起成分になる。

Fig. 6(b)と(c)に PMMA と MHDA SAM で測定した CH₃⁺のPIY スペクトルでの解析例を示す。○でプロット したものが PIY スペクトルで、緑色の実線がその PIY ス ペクトルを再現するように TEY と CH+ の PIY との合成 で得たスペクトルである。Fig. 6(b)の PMMA では, ○プ ロットと実線が非常に良い一致を示しており、この手法の 有効性がわかる。実線のスペクトルの再現に用いた CH+ の PIY 成分は青色のスペクトルで、水色で塗りつぶした 部分が σ*(O-CH₃) 成分に相当している。TEY 成分は赤 い点線で示しており、赤色で塗りつぶした部分がそのうち の $\sigma^*(O-CH_3)$ 成分になる。従って $\sigma^*(O-CH_3)$ 励起にお ける直接的なサイト選択的イオンの脱離は水色部分に相当 し、間接的に生成されたイオン脱離は赤色部分に相当する ことになる。この PMMA の CH₃⁺ イオン脱離の場合では $\sigma^*(O-CH_3)$ 励起での直接過程は65%で、間接過程の寄与 は35%と見積もれる。又〇プロットと実線との良い一致 から,直接イオン化も含めた他の全ての遷移で,大半が間 接過程を経てイオン脱離が引き起こされていると考えられ る。一方 MHDA SAM (Fig. 6(c)) では同様にして $\sigma^*(O)$

Fig. 7 Normalized PIY spectra of (a) CD_3^+ , (b) D^+ and (c) H^+ ions measured for MHDA-d₃ SAM in the C1s region at different incident angles of SR. (d) Incident angle dependence of integrated PIY intensities of H^+ , D^+ , CD_2^+ and CD_3^+ ions for the net $\sigma^*(O-CD_3)$ excitation.

-CH₃) 励起での直接過程が90-95%, 間接過程が 5-10% と求まり、数字の上からも SAM では選択性が大きく向上 していることがわかる。ここで SAM の場合, 高エネル ギー側では合成スペクトル(緑色実線)がPIY(○)と ずれてきている。これはイオン化しきい値(~290 eV) を超えるほど光電子の運動エネルギーが高まることや、 shake-up や shake-off 過程といった多電子遷移が起こるこ とにより、イオン性解離が引き起こされやすくなるためと 考えられる。これは Fig. 3の IDE スペクトルが高エネル ギーになるにつれて上昇することに対応している。他の脱 離イオンや SAM でも同様に評価できるが,代表して Fig. **6(d)**に MHDA-d₃ SAM での D⁺ イオン脱離を示す。この 図では直接成分を過小評価して再現しているが、それでも $\sigma^*(O-CD_3)$ 励起での直接成分は約85%と求まり、MHDA SAM での CH₃⁺ と同程度の選択性を有していることを示 している。解離ダイナミクスを検討する上で非常に興味深 い結果である。

このようにサイト選択的な直接解離過程と非選択的な間 接解離過程の2つの解離プロセスの分岐比を評価するこ とができたが、ここで重要なことはSAMの場合は単分子 膜であることから、その間接解離過程は主にエネルギー再 分配による非局在化によっているであろうということであ る。特に今着目した $\sigma^*(O-CH_3)$ 共鳴励起はSAMの最上 表面に位置する末端官能基で局所的に起こっているので、 $CH_3^+ \approx D^+ イオン脱離に見られるわずかな間接過程成分$ はほぼこの統計的緩和過程によっており、この分子系自身 がもつ本質的な性質であると考えられる。

3.4 PIY スペクトルにおける偏光依存性

SAM 構成チオール分子はメチレン鎖間の分子間力を介 して基板上にほぼ立った状態で吸着しており,そのため末 端官能基は高密度・高配向で最上表面に並んでいることに なる。したがって SAM の内殻共鳴遷移は偏光依存性を有 し,TEY スペクトルは明瞭な偏光角度(光入射角度)依 存性を示す。ここではその後の反応ダイナミクスを経たイ オン脱離現象でも偏光依存性が保持されうるのかどうか, 又どのような情報がそこから得られるのかを調べる目的 で,エステル修飾 SAM の内殻励起イオン脱離反応におけ る偏光依存性を調べた^{9,10,17,18}。実験手法の詳細に関して は参考文献を参照願いたい。

ー例として Fig. 7 に MHDA-d₃ SAM の炭素領域で得ら れた入射角依存性を示す。入射角度は図中の差込絵のよう に試料表面からの角度 θ で表しており,この角度は表面垂 直からの偏光ベクトルの角度に一致する。10°から80°まで 測定を行った結果,図のように(a) CD₃⁺や(b) D⁺ イオン は選択的な脱離を引き起こす特定の励起($\sigma^*(O-CD_3) \leftarrow$ C1s(OCD₃))で大きな角度依存性を示し,他の励起やイ オン化では依存性をほとんど示していない。一方,選択的 な脱離を起こさない(c)の H⁺ では角度依存性を全く示さ ないことがわかる。このような傾向は他の試料や酸素領域 でも同様で,イオン脱離反応ではサイト選択性を示す共鳴 励起で特定のイオンのみが顕著な偏光依存性を示し,非選 択的な脱離イオンは角度依存性を示さないといえる。内殻 励起の局所性と3.2節で述べた間接過程との競争が,内殻 励起時の初期メモリーの一つである偏光性を保持し得るか どうかを決めているといえる。

これら PIY スペクトルに対してピークフィッティング で抽出した $\sigma^*(O-CD_3)$ 励起における各脱離イオン収量の 入射角プロットを Fig. 7(d)にまとめている。H+ イオンは ほとんど角度依存性を示さず,末端メトキシ基由来のD+, CD₂⁺, CD₃⁺ イオンは, 放射光が斜入射, すなわち電場べ クトルが表面垂直方向に近いほど脱離が増大している。こ のことから $\sigma^*(O-CD_3)$ 励起での遷移双極子モーメントの 方向は表面垂直に近いことがわかり17),励起光をより斜 入射にするほどサイト選択的脱離を促進させることができ る。また各イオンの角度依存性には違いがあり、CD+ が 最も高い依存性を示し、 CD_2^+ , CD_3^+ , D^+ の順に依存性は 悪くなっている。この傾向性は Fig. 4 に示した脱離イオン スペクトルの選択性の良さの順と一致しており、詳細は省 くが様々なダイナミクスを経た後のイオン収量からでも, サイト選択性を示す成分であれば内殻励起反応に関する明 快な情報を引き出すことができる¹⁸⁾。

4. おわりに

以上のように、内殻共鳴励起特有のサイト選択性は表面 分子系のイオン脱離反応において明快な形で見出すことが できる。これまでの様々な研究から表面分子系の方が気相 孤立分子よりも内殻共鳴励起によるサイト選択性は発現し やすいと考えられる¹⁹⁾。高エネルギー状態を経由するこ とによる間接的な反応過程が妨げになるものの、原理的に は Fig. 1に描いた「分子メス」という概念は軟 X 線光を用 いることで実現可能と考えられ、原子レベルでの表面加工 や改質につながる技術になりうると期待できる。今後様々 な分子系での検証が必要であるとともに、更に多角的な検 討が必要である。

例えば我々がこの他に取り組んでいる研究を以下に挙げ る。内殻励起イオン脱離反応の途中のプロセスとして非常 に重要な役割を担う Auger 崩壊過程とイオンとの相関を 調べる, Auger 電子 – イオン・コインシデンス計測を行 うことによって,初期電子励起,Auger 崩壊,イオン脱 離と続く内殻励起イオン脱離反応の一連の過程を詳細に検 討することができる。本稿で挙げた PMMA^{3,4)}や MHDA SAM²⁰⁾では,内殻共鳴励起に依存した特定の Auger 崩壊 (スペクテーター型 Auger 崩壊)を経て選択的なイオン脱 離が促進されていることがわかった。特定の化学結合にお ける反結合性軌道への内殻電子の励起による結合力の低下 と,その結合性軌道における2正孔の生成に起因した クーロン反発により,サイト選択的なイオン脱離は促進さ れていることが明らかになった。又,イオンとしての脱離 過程ばかりこれまで述べてきたが,脱離するのはイオンよ

りも中性種の方が多いと考えられている。脱離中性種検出 による考察は、電荷移動を伴わない直接的な解離過程やエ ネルギー緩和による間接的な解離過程、脱離の際のイオン の再中性化過程など、内殻励起脱離反応の全貌を解明する 上で非常に重要な知見を与えうると考えられる。我々は超 短パルスレーザーを用いたフェムト秒レーザーイオン化法 により中性種を検出する手法を用いており、例えば PMMA ではどの中性種でも選択的な脱離を起こさないと いう結果を得ている⁸⁾。これは内殻励起のサイト選択性を 顕現するにはイオン性解離過程が重要な役割を担っている ことを示唆している。これらの実験は広島大学の放射光施 設 HiSOR の BL13において現在進めている研究である。 更にこれらの実験結果を踏まえた理論的側面からのアプ ローチとして, ab initio 計算による内殻励起スペクトルの 解析や Auger スペクトルの解析5)を、広島大学化学専攻の 岩田末廣教授や高橋修助手,ストックホルム大学のPettersson 教授らとの共同研究で進めている。

謝辞

本研究を遂行するにあたり,広島大学大学院理学研究科 の隅井良平博士,松本吉弘氏,木崎寛之氏の協力に負うと ころが大きかったことに感謝します。又本研究はPF 共同 利用実験課題(2001G125,2002G273,2004G314),なら びに日本学術振興会未来開拓学術研究推進事業「光科学」 プロジェクト(JSPS-RFTF-98P-01202),科学研究費若 手研究(B)(15750011)および基盤研究(A)(16205002) の支援を受けて行われたものであり,ここに感謝します。

参考文献

- M. C. K. Tinone, K. Tanaka, J. Maruyama, N. Ueno, M. Imamura and N. Matsubayashi: J. Chem. Phys. 100, 5988 (1994).
- T. Sekitani, E. Ikenaga, K. Fujii, K. Mase, N. Ueno and K. Tanaka: J. Electron Spectrosc. Relat. Phenom. 101–103, 135 (1999).
- E. Ikenaga, K. Isari, K. Kudara, Y. Yasui, S. A. Sardar, S. Wada, T. Sekitani, K. Tanaka, K. Mase and S. Tanaka: *J. Chem. Phys.* 114, 2751 (2001).
- E. Ikenaga, K. Kudara, K. Kusaba, K. Isari, S. A. Sardar, S. Wada, K. Mase, T. Sekitani and K. Tanaka: *J. Electron Spectrosc. Relat. Phenom.* 114–116, 585 (2001).
- E. O. Sako, Y. Kanameda, E. Ikenaga, M. Mitani, O. Takahashi, K. Saito, S. Iwata, S. Wada, T. Sekitani and K. Tanaka: *J. Electron Spectrosc. Relat. Phenom.* **114–116**, 591 (2001).
- 6) 田中健一郎:「新しい放射光の科学」菅野 暁,藤森 淳, 吉田 博編(講談社サイエンティフィク,2000年)第6章, p.135.
- K. Tanaka, E. O. Sako, E. Ikenaga, K. Isari, S. A. Sardar, S. Wada, T. Sekitani, K. Mase and N. Ueno: *J. Electron Spectrosc. Relat. Phenom.* **119**, 255 (2001).
- S. Wada, Y. Matsumoto, M. Kohno, T. Sekitani and K. Tanaka: J. Electron Spectrosc. Relat. Phenom. 137–140, 211 (2005).

- S. Wada, E. O. Sako, R. Sumii, S. Waki, K. Isari, T. Sekiguchi, T. Sekitani and K. Tanaka: *Nucl. Instr. Meth. Phys. Res. B* 199, 361–365 (2003).
- 10) S. Wada, R. Sumii, K. Isari, S. Waki, E. O. Sako, T. Sekiguchi, T. Sekitani and K. Tanaka: *Surf. Sci.* **528**, 242–248 (2003).
- 11) S. Wada, R. Sumii, H. Kizaki, Y. Matsumoto, T. Sekitani and K. Tanaka: to be published.
- 12) R. Sumii, S. Wada, H. Kizaki, Y. Matsumoto, T. Sekitani and K. Tanaka: to be published.
- K. Tanaka, M. C. K. Tinone, H. Ikeura, T. Sekiguchi and T. Sekitani: *Rev. Sci. Instrum.* 66, 1474 (1995).
- 14) P. S. Bagus, K. Weiss, A. Schertel, Ch. Woll, W. Braun, C. Hellwig and C. Jung: *Chem. Phys. Lett.* 248, 129 (1996).
- 15) D. Coulman, A. Puschmann, U. Hofer, H.-P. Steinruck, W.

和田真-

攻・助手

[略歴]

拓中。

系での化学反応動力学

広島大学大学院理学研究科 物理科学専

E-mail: swada@sci.hiroshima-u.ac.jp

専門:光化学,分子分光学,簡単な分子

1997年に東京工業大学大学院理工学研

究科化学専攻で博士課程修了後,通産省

産業技術融合領域研究所博士研究員を経 て1998年より現職。レーザーから放射

光、気相素反応からクラスター反応、表

面反応と視野を拡げながら, 分子分光を

ベースとした化学反応ダイナミクスの解

明をテーマに研究に従事。現在は内殻励

起と表面反応という組み合わせのユニー

クさに熱中しながら,新奇なテーマを開

Wurth, P. Feulner and D. Menzel: J. Chem. Phys. 93, 58 (1990).

- 16) R. Jaeger, J. Stohr and T. Kendelewicz: Surf. Sci. 134, 547 (1983).
- H. Kizaki, S. Wada, E. O. Sako, R. Sumii, S. Waki, K. Isari, T. Sekitani, T. Sekiguchi and K. Tanaka: *J. Electron Spectrosc. Relat. Phenom.* (2005) in press.
- 18) S. Wada, R. Sumii, H. Kizaki, Y. Iizuka, Y. Matsumoto, T. Sekitani and K. Tanaka: *Surf. Sci.* 144–147, 447 (2005).
- 19) 本稿ではなぜ表面でのイオン脱離においてサイト選択性が 反映されやすいのかは詳述していないので, Ref. 6,7を参 照されたい.
- 20) T. Sekitani, K. Kusaba, K. Morita, Y. Nanbu, K. Isari, E. Ikenaga, S. Wada and K. Tanaka: *Surf. Sci.* 532–535, 267 (2003).

● 著 者 紹 介 ●

田中健一郎 広島大学大学院理学研究科 物理科学専

攻・教授 E-mail: tanaka@sci.hiroshima-u.ac.jp 専門:物理化学,軟X線光化学

[略歴] 1974年に東京工業大学で学位取得後, カナダ・ヨーク大学・実験宇宙科学研究 センター博士研究員,分子科学研究所助 手,高エネルギー物理学研究所助教授を 経て1995年に広島大学理学部物性学科 に入職し現在に到る。これまで真空紫外 ・軟X線領域の光によるイオン化・化 学反応過程の研究を行ってきた。最近で は,多くの皆さんと「軟X線光化学」 分野の構築を目指している。

Control of chemical bond breaking utilizing resonant core excitations: Toward the ''Molecular Scalpel''

Shin-ichi WADA

Kenichiro TANAKA

Graduate School of Science, Hiroshima University 1–3–1, Kagamiyama, Higashi-Hiroshima, 739–8526, Japan Graduate School of Science, Hiroshima University 1–3–1, Kagamiyama, Higashi-Hiroshima, 739–8526, Japan

Abstract Resonant core-electron excitation is possessed of an attractive potential to induce selective chemical bond breaking due to its special localization and selectivity. With a view to realizing the concept of "molecular scalpel", control of chemical bond breaking was examined in photon stimulated ion desorption (PSID) of core-excited poly-methylmethacrylate (PMMA) thin film, methyl ester terminated self-assembled monolayer (MHDA SAM), its partial deuteride (MHDA-d₃) SAM and ethyl ester terminated (EHDA) SAM. Site-selective chemical bond breaking was observed for all molecular systems in the C1s $\sigma^*(O-R)$ (R = CH₃, C₂H₅) excitations and the O1s $\sigma^*(O-R)$ and $\sigma^*(C-OR)$ excitations. Characteristic and mechanism of the desorption reaction induced by core excitations were discussed based on the experimental results.