

世界一のフェノール合成 Re 触媒の発見と その触媒活性構造の解明

唯 美津木 東京大学大学院理学系研究科化学専攻 〒113-0033 文京区本郷 7-3-1 岩澤 康裕 東京大学大学院理学系研究科化学専攻 〒113-0033 文京区本郷 7-3-1

要 旨 ベンゼンと酸素分子からのフェノール直接合成において世界で最も高い触媒活性,フェノール選択性を示す HZSM-5 ゼオライト担持 Re 触媒を発見した。この担持 Re 触媒は,アンモニアの共存下,過去40年間越えることができ なかったベンゼン転化率5%,フェノール選択性50%の壁を遥かに越えるベンゼン転化率(9.9%),フェノール選択性 (94%)を示す。放射光を利用した XAFS 構造解析により,アンモニアによって中心に窒素原子を内包した Re クラス ターが形成され,これがフェノール合成反応の触媒活性種であることが明らかになった。

1. フェノールの用途と工業的合成プロセス

フェノールは、ベンゼン環の水素原子の一つがヒドロキ シル基(-OH)に置き変わった単純な構造の分子である が、現代の我々の生活には欠かすことのできない化学物質 の一つである。タンパク質を変性させ、強い殺菌力、消毒 作用を示すことから、19世紀半ば過ぎから殺菌消毒薬と して広く利用されてきた。現在では、住宅建材、自動車エ ンジンの鋳型、防火パネルや電子部品の鋳型、断熱材など に加工されるビスフェノールAやフェノール樹脂の直接 原料として工業的に汎用され、また塗料、接着剤などに利 用されるエポキシ樹脂の原料でもあることから、その加工 製品は日常生活に深く浸透した物質の一つである。2004 年の国内生産量は96万トンを超え、世界では毎年700万ト ン以上も生産されている。

フェノールの工業的な製法は、石油ナフサの精製から得 られるベンゼンを原料とした3段階の合成反応であるク メン法(Fig.1)に基づく。酸触媒の条件下ベンゼンをプ ロペンと反応させてクメンに変換し、酸素により自動酸化 して過酸化物中間体クメンヒドロペルオキシドを得る。最 後に、過酸化物中間体を濃硫酸の共存下で分解させ、目的 のフェノールが得られる。この過酸化物中間体は爆発性を 有するため、3段階目の最終ステップにおいて原料である 過酸化物の濃度を上げることができない。低濃度で使用せ ざるを得ないことから、最終生成物であるフェノールの収 率が低下してしまい、現行のクメンプロセスでは反応に用 いたベンゼンの5%程度しかフェノールを合成できない のが現状である。3段プロセスによる低エネルギー効率、 濃硫酸の使用、副生成物の生成など、環境への負荷が大き いという点も問題となっている。

Fig. 1 Cumene process (3-steps reactions from benzene) and the direct phenol synthesis from benzene in one step on Re/ HZSM-5. In cumene process, benzene converts to cumene, cumene hydroperoxide, and then phenol using H_2SO_4 . Phenol yields is less than 5%.

このような諸問題を回避し、より効率的で環境負荷の少ない合成プロセスとして、ベンゼンを空気中に多量に含まれる酸素と反応させて、一段でフェノールを合成するベンゼンからのフェノール直接合成が強く望まれてきた。過去40年の間、数多くの研究がなされてきたが、酸素分子を酸化剤として使用した場合は、ベンゼン転化率(ベンゼンがどのくらい反応したかの度合)5%、フェノール選択性(反応したベンゼンがどのくらいフェノールに変換されたかの割合)50%の壁を越える優れた触媒は全く存在しなかった。これらの事実からもわかるように、酸素分子を酸化剤としたベンゼンからのフェノール直接合成は、ベンゼンのC-H 結合に酸素原子を一つ挿入するだけの反応であるが、非常に難しい合成反応の一つであり、1990年代後

Fig. 2 The structure of ZSM-5 zeolite.

半にはアメリカ化学会発行の Chemical Engineering News にて、10の最も困難な合成反応に挙げられた¹⁾。

2. 酸素を酸化剤としたフェノール直接合成 反応に世界最高収率を示すゼオライト担 持 Re 触媒の合成

秋々の研究グループでは,最近 HZSM-5 というゼオラ イトに担持した新規 Re 触媒が,アンモニアの存在下,酸 素分子のみを酸化剤として94%の世界最高のフェノール 選択性でベンゼンをフェノールに変換することを見出し た^{2,3)}。HZSM-5 ゼオライトは,Fig.2のような結晶構造を 取る多孔性物質であり,細孔サイズが5.5Åの3次元的な 細孔構造を有する。結晶格子はケイ素と酸素を骨格として 構成され,格子中のケイ素が一部アルミニウムに置換され ており,電荷補償のためアルミニウムと同数のプロトン H⁺(酸点)を有する。その酸性度は,ゼオライトの種類 に大きく依存し,HZSM-5の酸性度は,他のゼオライト 結晶であるモルデナイトやY型ゼオライトと比べて中程 度に相当する。

フェノール合成に優れた触媒活性を示すゼオライト担持 Re 触媒は、メチルトリオキソレニウム(CH₃ReO₃)とい う昇華性を有する化合物をCVD法(Chemical Vapor Deposition;気相化学蒸着法)でゼオライトに蒸着し、ヘ リウム雰囲気下加熱することによって合成される。CVD 法は、担持する物質を蒸気で担体に導入する方法であり、 担持触媒を調製する手法として用いられる。この場合は、 CH₃ReO₃のCH₃基がゼオライト細孔表面のH⁺酸点(水 酸基)と化学量論的に反応して、メタンCH₄を生成しな がら表面と化学結合(Re-O-Al/Si)を形成することによ って、ゼオライト細孔表面に固定化される(**Fig. 3**)。

HZSM-5 ゼオライトは、含まれる Al の量が異なる幾つ かのゼオライトが存在することから、Al 量(Si/Al 比)の 異なるゼオライトを用いて、CVD 触媒を調製した。ま た、別のゼオライトであるモルデナイト、USY ゼオライ ト、及びベータゼオライトに CVD 法で CH₃ReO₃ を担持

Fig. 3 The preparation steps of the Re/HZSM-5 catalyst for the direct phenol synthesis from benzene and O_2 . (A) Inactive Re monomer produced by the reaction of benzene and O_2 , and (B) active N-interstitial Re₁₀ cluster produced by NH₃.

した触媒も調製した。更に,触媒活性の比較参照用として,通常の担持触媒調製法である含浸法(溶媒に金属塩前 駆体を溶かし,そこに担体を浸漬して溶媒を除去すること により調製する方法)で NH₄ReO₄ を用いて含浸触媒を得た。

3. ベンゼンと酸素分子からのフェノール直 接合成における触媒特性

Table 1にベンゼンと酸素からのフェノール直接合成反応の定常反応での触媒特性を示す。CVD法によって調製したHZSM-5 担持 Re-CVD 触媒(Si/Al=19)は、アンモニアの存在下、5.6%のベンゼン転化率、88%のフェノール選択性でベンゼンをフェノールに転換した(Table 1)。副生成物は、炭酸ガス(二酸化炭素)と窒素だけであり、他の有害な副生成物がない環境にも優しい反応である。この2つの副生成物は、いずれも常温常圧で気体であり、液体(融点:43℃)のフェノールから簡単に分離することができる。

興味深いことに,このフェノール生成反応は,同じ HZSM-5 担持 Re 触媒上であっても,アンモニアが存在 しないと全く進行しなかった(Table 1)。一方で,触媒活 性とフェノール選択性は,ゼオライト内に含まれる AI 酸 点の数とゼオライトの種類に依存し,HZSM-5 担持触媒 では,AI(酸点)の数が増加すると触媒活性(反応速度), フェノール選択性共に増加した。モルデナイト(Re/H-Mordenite)やUSY(Re/H-USY),ベータゼオライト担 持 Re 触媒(Re/H-Beta)では,同じCVD法によって調 製されたにも関わらず,いずれも活性,選択性ともに低か った。触媒活性,選択性が,ゼオライト担体の構造と酸性 度に顕著に依存していることから,ゼオライト担体の構造

Catalyst	SiO ₂ /Al ₂ O ₃	Method	Re loading /wt%		Phenol selectivity /% ^[c]
HZSM-5	19			trace	0
$Re/HZSM-5^{[d]}$	19	CVD	0.58	trace	0
Re/HZSM-5	19	CVD	0.58	65.6	87.7
Re/HZSM-5[e]	19	CVD	0.58	51.8	85.6
Re/HZSM-5[f]	19	CVD	2.2	83.8	82.4
Re/HZSM-5	19	Impreg.	0.6	11.8	27.7
Re/HZSM-5	19	Phys. ^[g]	0.6	trace	0
Re/HZSM-5 ^[d]	23.8	CVD	0.58	trace	0
Re/HZSM-5	23.8	CVD	0.58	36.2	68.0
Re/HZSM-5	23.8	Impreg.	1.2	18.5	15.3
Re/HZSM-5	39.4	CVD	0.59	31.0	48.0
Re/HZSM-5	39.4	Impreg.	1.2	16.4	14.3
Re/H-Beta	37.1	CVD	0.53	18.5	12.0
Re/H-USY	29	CVD	0.60	trace	0
Re/H-Mordenite	220	CVD	0.55	26.3	23.4

Table 1 Catalytic performances of Re catalysts at 553 K for the direct phenol synthesis from benzene and molecular oxygen^[a]

[a] Catalyst = 0.20 g; W/F = 6.7 g_{cat} h mol⁻¹; He/O₂/NH₃/benzene = 46.4/12.0/35.0/6.6 (mol%). [b] Consumed benzene/Re/s. [c] Phenol selectivity in carbon%. [d] In the absence of NH₃. [e] W/F = 5.2 g_{cat} h mol⁻¹. [f] W/F = 10.9 g_{cat} h mol⁻¹; He/O₂/NH₃/benzene = 46.4/12.0 /35.0/6.6 (mol%). [g] Physical mixing of MTO.

比較参照用として調製した含浸 Re 触媒(Impreg.)では, ベンゼン転化率,フェノール選択性共に低かった³⁾。

4. ゼオライト担持 Re 触媒の構造解析

4.1 Re Li 端の XANES

この担持 Re 触媒は、なぜこれほど高い活性,選択性で ベンゼンと酸素からフェノールを合成できるのか? ゼオ ライトの細孔内では Re はどのような構造で存在するので あろうか? 真の触媒活性構造と反応に必要不可欠である アンモニアの役割を明らかにするために、放射光を利用し た XAFS (X 線吸収微細構造)測定による触媒構造解析 を行った。この種の担持金属触媒は、ゼオライト細孔表面 に金属種を分散させていることから、結晶性化合物のよう な周期的構造を持たないため、X 線回折を利用した結晶 構造解析が出来ない。XAFS は、担持金属触媒の金属周 りの局所配位構造の詳細を明らかにすることができる有力 な手法である。

XAFS は、金属種の構造対称性、価数などの情報を与 える吸収端近傍の遷移に基づく XANES と局所配位構造 の詳細(配位数,結合距離)などの情報を与える EXAFS に分かれる。我々は、高エネルギー加速器研究機構放射光 科学研究施設のビームライン 12C で、この担持 Re 触媒の XAFS 測定を行った。測定対象元素である Re の L_I 吸収 端は、2s から 6p への許容遷移に相当し、2s から 5d への 遷移は双極子禁制であるため、本来観測されない。しかし ながら、Re 種がテトラヘドラル構造の時は、6p と 5d の 軌道が混成することで、2s→6p-5d の遷移が吸収端(2s→ 6p)の直前に現れる。このプリエッジと呼ばれる遷移は、

Fig. 4 Re L₁-edge XANES spectra measured at 15 K for the Re/ HZSM-5 catalyst (Re: 0.58 wt%, CVD, SiO₂/Al₂O₃=19). (A): After steady-state reaction, (B): (A) after treatment with NH₃ at 553 K, and (C): (B) reacted with 5 pulses of benzene and O₂ at 553 K.

テトラヘドラル構造に特有であることから, Re L_Iの XANES 測定により, Re 種の対称性に関する情報が得ら れる⁴⁾。

Fig. 4がこの担持 Re 触媒の Re L_I 端の XANES スペクトルである。定常触媒反応後の試料(A)では,**Fig. 4**(A)のように12529 eV にプリエッジが観測され,Re 種がテトラヘドラル構造を有することがわかる。このテトラヘドラル 構造を反応温度553 K でアンモニアと 2 時間反応させると,その XANES スペクトルは **Fig. 4**(B)のように大きく変化した。テトラヘドラル構造に対応するプリエッジピークが完全に消失し,2s から 6p の吸収端の許容遷移も低エ ネルギー側にシフトしていることがわかった。これらか ら、テトラヘドラル構造の Re 種はアンモニアと反応して そのテトラヘドラル構造を消失し、Re のd 電子密度の増 加すなわち還元された Re 種に構造変化していることが示 唆される。XPS (光電子分光)の結果から見積もられた Re の価数は、それぞれ(A) Re⁷⁺, (B) Re³⁺–Re⁴⁺ であり、 XANES の結果と対応する。

4.2 Re L_{III} 端の EXAFS カーブフィッティングによる 局所配位構造解析

Re L_{III}端の EXAFS 解析からは, 担持 Re 種の局所配 位構造の詳細を明らかにすることができる。Fig.5に定常 反応後の Re 触媒(A) (Fig. 3(A)),及び(A)を553 K でア ンモニアと反応させた後の触媒(B) (Fig. 3(B))の Re L_{III} 端のフーリエ変換(15Kで測定)を示す。定常反応後の (A)では、1-2Åに一つのピークを与え、このフーリエ変 換スペクトルのカーブフィッティング(Table 2)から, 1.73 Å に Re = O の 2 重結合を 3 つ (配位数 CN = 3.7 ± 0.2) 有し, 2.13 Åの Re-O 単結合が1つ (CN=1.3±0.7) 有した Re⁷⁺ の4 配位構造を有すると考えることができる。 Re-Re 結合が全く観測されないことから、この段階では Re 種はモノマー(単核構造)をとることがわかる。一方 で、この触媒をアンモニアと反応させた後の構造(B)にお いては, 2-3 Å に新たなピークが観測された (Fig. 5(B))。 Table 2 のカーブフィッティングの結果からもわかるよう に、この結合は2.76±0.02 Åの Re-Re 結合に起因し、そ の配位数は5.2±0.3と見積もられた。この配位数5.2は, 金属微粒子の配位数12と比べて十分に小さく、アンモニ アによって金属-金属結合を有する Re クラスターが形成 されたことがわかる。

反応温度553 K にてアンモニアと2 時間反応させた後の Re-CVD 触媒(B)を,真空中加熱すると窒素分子の発生が 確認された(Fig. 6)。Fig. 6 の昇温脱離曲線では,Re を担 持していない HZSM-5 担体では,全く窒素分子の生成が 見られないのに対し,高活性を示す担持 Re 触媒をアンモ ニアと反応させた試料からは400℃付近で窒素分子が生成 した。アンモニアと反応させていない担持 Re-CVD 触媒 からも、窒素分子の生成は見られなかった。生成した窒素 分子の量は Re 一原子あたり0.12個であることから、Re₁₀ 当たり一個の窒素分子を保有していることがわかる。

これらの構造解析結果を基に,DFT(密度汎関数法) による理論計算を用い,アンモニアによって形成される Reクラスターの構造モデリングを行った。Re-Reの配位 数5.2, Re=O, Re-N/Oの配位数と結合距離を基に可能な

Fig. 5 Re L_{III} -edge EXAFS Fourier transforms measured at 15 K for the Re/HZSM-5 catalyst (Re: 0.58 wt%, CVD, SiO₂/Al₂ O₃=19). (A): After steady-state reaction, (B): (A) treated with NH₃ at 553 K for 2 h, and (C): (B) reacted with 5 pulses of benzene and O₂ at 553 K. Solid and dotted spectra represent observed and fitted spectra, repectively.

Table 2Curve-fitting results of Re L_{III} -edge EXAFS Fourier transforms for the Re/HZSM-5 catalyst (Re: 0.58 wt%, CVD, SiO₂/Al₂O₃ = 19)measured at 15 K

Catalyst	Shell	CN	Distance/nm	σ^2/nm^2	$\varDelta E_0$
(A) after steady-state	Re=O	3.5 ± 0.2	0.173 ± 0.001	$(1.4\pm0.3) imes10^{-5}$	$R_{\rm f} = 0.9\%$
reaction at 553 K	Re–O	1.4 ± 0.6	0.211 ± 0.003	$(8.4 \pm 5.3) \times 10^{-5}$	
(B) (A) treated with	Re=O	0.3 ± 0.2	0.172 ± 0.001	$(2.3\pm2.4) imes10^{-5}$	$R_{\rm f} = 0.5\%$
NH_3 at 553 K for 2 h	Re–N	$\boldsymbol{2.8} \pm \boldsymbol{0.3}$	0.204 ± 0.001	$(5.8 \pm 0.9) \times 10^{-5}$	
	Re–Re	$5.2\!\pm\!0.3$	0.276 ± 0.002	$(5.2 \pm 0.2) \times 10^{-5}$	
(C) (B) reacted with 5 pulses of benzene and	Re=O	3.7 ± 0.2	0.173 ± 0.001	$(1.4\pm0.3) imes10^{-5}$	$R_{\rm f} = 1.3\%$
O_2 at 553 K	Re–O	1.3 ± 0.7	0.213 ± 0.003	$(9.1\pm7.7) imes10^{-5}$	

All spectra were Fourier-transformed at $k = 30-160 \text{ nm}^{-1}$ and fitted in R space of R = 0.10-0.32 nm.

クラスター骨格の構造をモデリング、構造最適化を行った ところ、基本骨格の Re₆ 核のオクタヘドラル構造を辺共 有で2 つつなげた Re10 核の構造のみが EXAFS から得ら れた局所配位構造を再現することが出来た。これは最も安 定なRe₆核のオクタヘドロン骨格を最小単位で連ねた構 造である。Re-Re の結合長は, EXAFS の結果から2.76 Å であることがわかっているが、N原子架橋型のRe-Re 結 合, Re クラスターの面 (Re₃の中心) に N 原子を有した 場合などは、全てRe-Reの結合長が3Å以上に伸びてし まい、実験から得られた結合長を保持したクラスターが形 成されるには、Re₆核の中心部分に窒素原子を内包した Re クラスターのみが唯一安定化し、EXAFS による局所 配位構造の解析結果に合致した。Fig.7にDFT によるモ デル構造を示す。2つのRe6 骨格内部に窒素原子が内包さ れた Re₁₀ クラスターが HZSM-5 の Al 酸点上に担持され ている。幸運なことに酸素配位子の数も含めてこれ以外の クラスター構造は全て不安定化してしまい,かつ EXAFS の解析結果と合わない。HZSM-5 ゼオライトの細孔サイ

Fig. 6 Temperature-programmed desorption (TPD) of N_2 for HZSM-5 zeolite (\triangle) and the Re/HZSM-5 catalyst (Re: 0.58 wt%, CVD, SiO₂/Al₂O₃=19) treated with NH₃ at 553 K for 2 h (\bigcirc).

Fig. 7 The proposed structure of the N-interstitial Re₁₀ cluster supported in the pore of HZSM-5 modeled by DFT. (a) View from the pore of HZSM-5, and (b) Side view. Red: Re, green: N, blue: O, yellow: Al, and gray: Si.

ズは5.5 Å であり, Re クラスターのサイズはこれよりも 小さい。Re₆の骨格構造が3つ以上連なった多核構造は, この細孔内部で安定化されないため,これらの多核クラス ターが出来ないのは,この担体の細孔構造による影響が大 きいと考えられる。

5. フェノール直接合成反応の触媒活性種の 決定

これまでの構造解析の結果から,定常反応後には Re⁷⁺ のテトラヘドラル型 Re モノマー(単核構造)が生成し, これをフェノール合成反応に必要不可欠であるアンモニア と反応させると中心に窒素原子を内包した N 原子内包型 Re₁₀核クラスターが形成することを明らかにした(Fig. 3)。これらの構造のどちらが触媒活性種であるのかを明ら かにするために,これらの2つの構造を表面に作り分 け,反応分子であるベンゼンと酸素分子を用いたパルス反 応実験を行った。Fig.8に単核構造(A)及び N 原子内包型 Re クラスター(B)それぞれのベンゼン転化率とフェノー ル選択性を示した。単核構造(A)にベンゼンと酸素分子を パルスで導入しても、ベンゼンの酸化反応は全く進行せ ず,フェノールの生成は見られなかった。

一方,アンモニアとの反応によって形成させたN原子 内包型 Re クラスター(B)は、ベンゼンと酸素と反応し、 94%の選択性でフェノールを生成した(Fig. 8)。ベンゼン と酸素の混合パルスを複数回反応させたところ、その触媒 活性は Fig. 8 のように低下してゼロに至ったが、この間フ ェノールの選択性は活性の低下と共に低下することなく、 常に94%であった。酸素分子がベンゼンと反応し、残っ た酸素原子の片割れがベンゼンを二酸化炭素まで完全酸化

Fig. 8 Phenol formation rates and phenol selectivity of pulse reactions with benzene on the supported Re/HZSM-5 catalyst (Re: 0.58 wt%, CVD, SiO₂/Al₂O₃=19). □: the phenol formation rates of pulse reactions with benzene and molecular oxygen on the Re monomer (A), ■: the phenol formation rates of pulse reactions with benzene and molecular oxygen on the Re cluster (B), △: the phenol selectivity of pulse reactions with benzene and molecular oxygen on the Re cluster (B), △: the phenol selectivity of pulse reactions with benzene and molecular oxygen on the Re cluster (B), △: the phenol formation rates of pulse reactions with benzene and molecular oxygen on the Re cluster (B), ○: the phenol formation rates of pulse reactions with benzene on the Re cluster (B).

する反応機構である場合は、理論上到達可能な最高のフェ ノール選択性は94%であり、現在のフェノール選択性と 一致する。このパルス反応実験を、酸素を導入せずベンゼ ンだけで行った場合は、同じ Re クラスター(B)でも全く フェノールを生成しなかった。このことから、フェノール 直接合成反応における触媒活性種は N 原子内包型 Re ク ラスターであり、このクラスターが酸素分子を酸化剤とし てベンゼンからフェノールを生成していることが明らかと なった。

ベンゼンと酸素分子のパルス反応を5回行った後の, Re L_I XANES 及び Re L_{III} EXAFS を Fig. 4 と Fig. 5(C) に 示した。ベンゼン及び酸素と反応して触媒活性がなくなっ た後の Re クラスターは, Re⁷⁺のテトラヘドラル単核構 造に戻っていた。再びアンモニアと反応させると元の Re₁₀ 核クラスターに可逆的に戻ることから, 触媒反応中 もアンモニアによって N 原子内包型 Re クラスターが形 成され, これがベンゼン酸素と反応して不活性な単核構造 に戻り, 再びアンモニアによって活性構造を形成するサイ クルでフェノール直接合成反応を進行させていることが示 唆された。

6. 今後の展望

放射光を利用した XAFS 構造解析により, アンモニア によって N 原子内包型 Re クラスターが HZSM-5 ゼオラ イトの細孔内に形成され, これがフェノール直接合成反応 の触媒活性構造であることを世界で初めて見出した。ベン ゼンからのフェノール直接合成という40年の壁を破った この Re クラスター触媒は, これまで類似のクラスター錯 体が報告されておらず, 全く新規のクラスター構造を有す るものである。Fig. 4 と Fig. 5(A)に示した定常反応後の XAFS 構造解析では, アンモニア, ベンゼン, 酸素での 定常反応条件では,活性 Re クラスターの実効濃度が低 く,単核構造が主に存在していることがわかる。これは, アンモニアによる活性 Re クラスターの形成が553 K では 2 時間かかるのに対し,ベンゼンと酸素との反応が非常に 早く数秒で終わってしまうため,活性クラスターの実質的 な濃度が低く,捉えられないためである。活性クラスター の安定性を増加させることができれば,飛躍的にベンゼン 転化率(触媒活性)が増加することが期待され,これまで の放射光を利用した構造解析の結果を基にして次の触媒設 計が行われている⁵⁾。現在のベンゼンの最高転化率は9.9 %であるが,ベンゼンの転化率を更に増加させることが出 来れば,現在の化学工業プロセスにおいて大きなブレーク スルーがもたらされるものと期待される。

謝辞

本研究は,高エネルギー加速器研究機構放射光科学研究施設のビームライン12Cを利用して行われた(PF-PAC 課題番号:2003G092,2005G208)。本研究に関わるXAFS測定では,物質構造科学研究所の野村昌治教授,稲田康宏助教授にディスカッション頂き,この場を借りて深くお礼申し上げます。

参考文献

- 1) J. Haggin: Chem. Eng. News 23 (1993).
- 2) T. Kusakari, T. Sasaki and Y. Iwasawa: Chem. Commun. 992 (2004).
- R. Bal, M. Tada and Y. Iwasawa: Angew. Chem. Int. Ed. 45, 448 (2006) (HOT PAPER).
- 4) M. Froba, K. Lochte and W. Metz: J. Phys. Chem. Solids 57, 635 (1996).
- 5) M. Tada, R. Bal, T. Sasaki, Y. Uemura, Y. Inada, M. Nomura and Y. Iwasawa: in preparation.

Design of Novel Re Catalyst for Direct Phenol Synthesis and Characterization of Its Catalytically Active Structure

Mizuki TADA

Yasuhiro IWASAWA

Graduate School of Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo–ku, Tokyo 113–0033 Graduate School of Science, The University of Tokyo, 7–3–1 Hongo, Bunkyo–ku, Tokyo 113–0033

Abstract A novel Re catalyst was prepared on HZSM–5 zeolite for direct phenol synthesis from benzene and molecular oxygen. The supported Re catalyst exhibited the highest phenol yield (9.9% conversion) and phenol selectivity (94%). The structure of catalytically active Re species supported on HZSM–5 was characterized by XAFS analysis and we found that ammonia produced a novel N-interstitial Re cluster, which was the active species for the direct phenol synthesis.