トピックス

結晶 X 線干渉計を用いた Z_{eff} イメージング法の開発

米山明男

㈱日立製作所研究開発グループ 〒185-8601 東京都国分寺市東恋ヶ窪 1-280

馬場理香

㈱日立製作所研究開発グループ 〒185-8601 東京都国分寺市東恋ヶ窪 1-280

竹谷 敏

産業技術総合研究所 物質計測標準研究部門 精密結晶構造解析グループ 〒305-8565 茨城県つくば市東1-1-1 中央第五

兵藤一行

高エネルギー加速器研究機構物質構造科学研究所 〒305-8565 茨城県つくば市大穂 1-1

武田 徹

北里大学医療衛生学部 〒252-0373 神奈川県相模原市南区北里 1-15-1

要 旨 結晶 X 線干渉計を用いて測定した位相と吸収コントラスト像から、被写体の平均的な原子番号(実効原子番号: effective atomic number, Z_{eff})を可視化する Z_{eff} イメージング法を開発した。単色放射光を用いてアルミ,鉄,ニ ッケル,及び銅の各金属箔を対象とした試用観察を行った結果,各金属の原子番号に対応した濃淡を示す Z_{eff} コン トラスト像の取得に成功した。また、ニッケル及び銅の Z_{eff} 値は誤差 5%以内で各原子番号と一致し、単一元素で構 成された被写体であれば、元素の種類を同定可能であることがわかった。

1. はじめに

X線の大きな特徴の一つは,電子線や可視光に比べて 物質に対する透過能が極めて高いことである。この特徴を 活かして,レントゲンやX線CTは被写体内部を非破壊 に観察する方法として,医療診断から製品検査まで様々な 分野で幅広く利用されている。本法で得られる画像は被写 体の線吸収係数に対応した濃淡を示し,外形や内部構造な ど吸収の異なる各領域を鮮明に可視化することができる。 しかし,被写体がどのような元素で構成されているのか, 元素組成に関する情報を得ることができず,蛍光X線分 析等の他手法との併用が必要であった。

X線は波長の短い電磁波であり、被写体を透過する際 に吸収による振幅の変化に加えて、位相の変化(位相シフ ト)も生じる。前者は被写体の持つ複素屈折率の虚部に、 後者は実部に比例した量であり、その比は各元素ごとに固 有の値を持つ。したがって、吸収及び位相コントラスト像 を計測し、被写体像上の同一位置における吸収と位相シフ トの比を計算することによって、平均的な原子番号(実効 原子番号:effective atomic number (Z_{eff}))を濃淡とする 像(Z_{eff} イメージング)を得ることができる。これまでに 本原理に基づき、X線用回折格子を用いたタルボ干渉計 やマイクロビーム走査型X線顕微鏡を用いた測定が行わ れ,各種ポリマーの実効原子番号像やその分布の可視化が 行われている^{1,2)}。

硬X線領域において位相シフトを検出する方法とし て、上記タルボ干渉法3)や屈折コントラスト法4)に加え て、単結晶のX線光学素子から構成されたX線干渉計を 利用するX線干渉法や⁵⁾,波の伝搬によって形成されたフ レネル干渉縞から求める伝搬法⁶⁾などが開発されている。 このうち,X線干渉法は位相シフトそのものを検出する 唯一の方法であり、タルボ干渉法や屈折コントラスト法な ど位相シフトの空間微分量を検出している方法に比べて, 数倍以上高い感度で位相シフトを検出することができ る^{7,8)}。著者らはこの高感度な X 線干渉法に着目し,バイ オメディカルやマテリアルイメージングへの適用を目的と して、大視野で安定した撮像に資するイメージングシステ ムの開発を行ってきた9,10)。現在,高エネルギー加速研究 機構放射光施設(KEK PF)のビームライン BL14C で最 大観察視野50mm×35mmのシステムが稼働してお り11),がんと正常組織の無造影での識別12),アルツハイ マー病モデルマウスから摘出した脳内に分布するβアミ ロイドの可視化と定量的な解析¹³⁾,低温下におけるメタ ンハイドレートの観察と自己保存効果の解明14),リチウ ムイオンバッテリーのオペランド観察¹⁵⁾などを行ってい る。

本稿では本 X 線干渉法を用いて位相シフトを検出する Z_{eff} イメージング法について、その原理と X 線干渉計を用 いたイメージングシステムについて概説した後、金属箔を 対象として本イメージング法を試用した結果¹⁶⁾について 紹介する。

2. Z_{eff}イメージングの原理

従来の吸収イメージング法は被写体の形態観察には優れ ているが、構成元素に関する情報を得ることはできない。 この問題を解決する方法として,異なるエネルギーのX 線で取得した複数の画像から計算によって元素情報を得る デュアルエネルギーX線CTと、位相と吸収の画像から 情報を得る Zeff イメージング法が現在開発されている。前 者はX線の各エネルギーに対して吸収係数の変化率が元 素毎に異なることを利用する方法で、医療用 CT やセキュ リティーチェック用検査装置への適用が進められている。 これまでにエネルギーの変更方法として,X線管に印加 する電圧を高速にスイッチングする方法などが開発され、 造影剤であるヨウ素を強調した画像などが取得されてい る。一方、後者は位相シフトと吸収係数の比が元素毎に固 有の値を持つことを利用する方法で,同一のX線エネル ギーを用いて計測を行うことができる。以下、本法の原理 について概説する。

X線に対する被写体の複素屈折率を

$$n = 1 + \delta + i\beta \tag{1}$$

として実部 δ と虚部 β を用いて表した場合,被写体を透 過する際に吸収によって生じるX線の強度変化 ln (I/I_0) は

$$\ln\left(\frac{I}{I_0}\right) = -\mu t = -\frac{4\pi}{\lambda}\beta t \tag{2}$$

で与えられる。ここで、 $I_0 \ge I$ はそれぞれ入射 X 線及び 被写体を透過した X 線の強度、tは被写体の厚さ、 λ は X 線の波長、 μ は線吸収係数である。一方、被写体によって 生じる位相シフト Δp は

$$\Delta p = \frac{2\pi\delta t}{\lambda} \tag{3}$$

で与えられる。このため、両式を用いて強度変化と位相シ フトの比 r を計算すると

$$r = \frac{2\Delta p}{\ln\left(I/I_0\right)} = \frac{\delta}{\beta} \tag{4}$$

となり,厚さや波長の項が打ち消されて,屈折率の虚部と 実部の単純な比になる。

実部δと虚部βは,原子番号Z,原子散乱因子の異常 分散項の実部f'と虚部f",古典電子半径r_e,単位体積中 に含まれる*i*種元素の数n_iを用いて

$$\delta = \frac{\lambda^2 r_e}{2\pi} \sum_i n_i (Z_i + f'_i)$$

$$\beta = \frac{\lambda^2 r_e}{2\pi} \sum_i n_i (-f''_i) \tag{5}$$

と表すことができる。したがって、最終的に比rは(4)と(5)式から

$$r = \frac{\delta}{\beta} = \frac{\sum_{i} n_i (Z_i + f'_i)}{\sum_{i} n_i (-f''_i)} \tag{6}$$

となる。ここで、Z, f' 及びf''ともに各元素に固有の値を 持つので、その比rも元素の種類に依存した固有の値とな る。すなわち、吸収と位相イメージングで得られた像の同 一位置における比rを計算することによって、元素に関す る情報を得ることができる。

Fig.1はX線のエネルギー17.8, 35, 50 keV において, 各原子番号Zに対する比rを計算した結果である。吸収 端を跨がない領域では原子番号Zと比rが1:1に対応し, rから一意に原子番号を算出可能なことがわかる。原子番 号Zとrの関係を指数関数

$$Z = ar^{-b} \tag{7}$$

で近似するとX線の各エネルギーにおける定数はTable 1 のようになり, 誤差1%以下でrからZを求めることがで

Fig. 1 Calculated ratios r of each atomic number (Z) for 18-, 35-, and 50 keV X-rays. Z-number can be obtained uniquely from r in energy region lower than absorption edge.

X-ray energy	а	b
17.8 keV	88.42	-0.347
35 keV	121.33	-0.322
50 keV	142.88	-0.311

 Table 1
 Each constant of approximation

きる。

被写体が混合物や化合物など複数の元素から構成されて いる場合には、上記によって比rから得られる値は被写体 に含まれている物質の平均的な原子番号として

$$Z_{\rm eff} = {}_{2.94} \sqrt{\sum_i f_i Z_i^{2.94}}$$
(8)

で定義される実効原子番号 Z_{eff} が得られる¹⁷⁾。ここで, f_i は各元素の原子数, Z_i は各元素の原子番号である。この ため、主構成元素が未知の場合、本法では元素の種類まで は同定することができない。しかし、錆びの進行など酸化 の状態や、構成元素の変化を伴う劣化の経時的な変化や空 間的な分布を可視化することは可能であり、組成元素の変 化という全く新しい指標に基づく各種の評価法として期待 できる。

3. 結晶 X 線干渉計を用いたイメージング システム

結晶 X 線干渉計は,単結晶から切り出した X 線光学素 子の X 線回折を利用して,入射 X 線の分割・反射・結合 を行うマッハ・ツェンダー型の振幅分割の干渉計である。 初期の干渉計は全ての光学素子が1個の結晶ブロック上 に形成された構造(一体型干渉計)であったが(Fig. 2(a)), 大視野化と試料スペース拡大のために現在は Fig. 2(b)に示

すような2個の結晶ブロックから構成された分離型干渉 計が利用されている。入射X線は結晶ブロック1の1枚 目の歯(スプリッタ)でラウエケースのX線回折により 物体波と参照波に分割され、ブロック1の2枚目の歯 (ミラー1),及びブロック2の1枚目の歯(ミラー2)で 同様のX線回折により向きを変え、ブロック2の2枚目 の歯(アナライザ)で重ね合わされて2本の干渉ビーム を形成する。物体波の光路中に被写体を設置すると、被写 体によって生じた位相シフトが波の重ね合わせによって出 射される干渉ビームの強度変動となって現れる。このた め,干渉ビームの強度変化から逆に被写体によって生じた 位相シフトを求めることができる。なお,分離型X線干 渉計を動作させるためには、X線の波長オーダーで光学 素子である結晶ブロック間の位置を安定化する必要がある。 Fig. 2(b)に示した構成では、ブロック間の相対的な回転 (θ回転)を0.01 nrad という極めて高い精度で保持する必 要がある。このため、以下に概説するイメージングシステ ムでは様々な機構を採用することによって、この安定性を 実現している。

Fig. 3 に上記分離型 X 線干渉計を用いたイメージングシ ステムの模式図を示す。本システムは、ビーム拡大用非対 称結晶,X線干渉計,同干渉計用位置決めステージ,サ ンプルステージ,位相板ステージ,画像検出器,及びフ ィードバック機構から主に構成されている。現在,高エネ ルギー加速器研究機構放射光施設のビームライン BL14C に常設されており,垂直ウィグラーから放射された縦に広 がった X 線を2結晶分光器で単色化し、非対称結晶によ り横方向に5~10倍(エネルギーに依存)に拡大した後、 干渉計に入射している。干渉計で形成された2本の干渉 ビームのうち,像鮮明度(Visibility)の高いビームは測 定用の画像検出器で検出し,他方は後述するフィードバッ ク機構で干渉計の安定化に利用している。

干渉計の安定した動作に不可欠な0.01 nrad の回転位置 決め精度は、(1)ステージ群を可能な限りシンプルな構成に

Fig. 2 (Color online) Schematic view of monolithic (a) and two-crystal X-ray interferometer (b). Large field of view can be obtained by using two-crystal interferometer, however, 0.01 nrad rotational accuracy between blocks is required for operation.

することで可動部を少なくして機械的な剛性を向上し,(2) 固体滑り機構と圧電素子を採用することで極微小な回転制 御を行い,(3)アクティブサスペンションの除振機構により 床からの振動を低減し,(4)二重の防音フードを設けること で音による振動を減少させることにより実現している。ま た,長時間にわたる安定性を確保するために,フィードバ ック機構を設けている。本機構では,結晶ブロック間の θ 回転が干渉像に現れている縞の動きとなって現れることを 利用して,その動きを打ち消すように θ 回転用圧電素子の 電圧を制御している。以上の対策により,本システムにお ける位相の変動は $\pi/20$ (角度換算30 prad)以下という極 めて高い精度で安定化できている^{18,19}。

放射光は一般的に横方向に発散したビームであり,縦方 向にも大きな視野を確保するためには非対称結晶等により X線を上下方向に拡大する必要がある。この場合,後段 のX線干渉計の配置も視野を確保するためには Fig.3 から 90度回転した構成にする必要があり,精密な回転位置決 めが必要な軸が水平方向を向くことになってしまう。この 場合,重力の影響が大きく,0.01 pradの位置決め安定性 の確保は非常に困難になる。一方,本イメージングシステ ムが常設されている BL14C の光源は世界で唯一の垂直ウ ィグラーであり,出射されるビームは縦方向に発散してい る。このため, Fig.3 のように X線を水平面内で展開する ことが可能で,干渉計の回転軸も重力の影響を受けない垂 直方向とすることができ,10 pradの極めて高い安定性を 実現できている。

4. 金属膜の観察結果

上記システムを用いて、アルミや銅など各種の金属箔を 対象とした試用観察を行った。X線のエネルギーは17.8 keVとし、非対称結晶にはオフセット角6度のSi結晶

Fig. 3 (Color online) Schematic view of imaging system fitted with two-crystal X-ray interferometer. 0.01 nrad accuracy was achieved by increasing mechanical rigidity, feedback system suppressing drift rotation, and active air suspension.

(回折面 Si(220)) を用いた。また、干渉像の測定には、 入射 X線を蛍光体で可視光に変換し水冷の高感度 CCD で 検出するレンズカップリング方式のX線画像検出器を使 用した。蛍光体は厚さ30ミクロンのGOS, CCDの画素サ イズは9ミクロン、画素数4096×4096、レンズ系の倍率 は1:1である。なお、本測定では2×2 画素を1 画素と して取り扱う Binning を用いたので, 画素サイズは18ミ クロンになる。位相シフトの定量的な測定には、位相シフ タ(Fig. 3) により位相を $2\pi/n$ ステップで走査し,得られ た複数の干渉像から計算によって各画素における位相シフ ト量を求める縞走査法を用いた。本測定では走査ステップ 数を3とし、各干渉像の露光時間を5秒とした。また、 吸収像は厚さ3mmの鉛板で参照波を遮蔽し,露光時間 15秒で測定した(Fig. 2(b)参照)。参照波を鉛板等によっ て遮蔽すると、干渉ビームは形成されずに被写体を透過し た物体波だけとなり、吸収像をそのまま測定することがで きる。このため、被写体や光学素子を移動することなく、 同じ位置かつ同じ角度から投影した吸収像を得ることがで きる。

被写体には、厚さ15ミクロンのアルミ、厚さ10ミクロ ンの鉄、厚さ5ミクロンのニッケル、及び厚さ5ミクロ ンの銅を用いた。各箔のサイズは横15mm,縦5mm で、縦方向に一列に並べて物体波の光路に設置した。また、 Z像では厚さtが打ち消されることを確認するために、右 端は折り曲げることにより厚さを2倍にした。

上記条件の測定で取得した位相像(位相シフトの空間分布) と吸収像を Fig. 4(a) 及び(b) に示す²⁰⁾。上から鉄,ニ ッケル,銅,アルミの順であり,位相像ではアルミだけで なく銅やニッケルのような原子番号の大きな元素について も,吸収像よりも高感度に表面の凸凹などを可視化できて いることがわかる。Fig. 4(c)は(a)と(b)の各画素について 比rを求め,さらに(7)式により算出した実効原子番号を 濃淡とした像(Z_{eff}像)である。各金属箔の濃淡が原子番

Fig. 4 (Color online) Obtained images of metal foils: (a) phasemap, (b) absorption map, and (c) Z_{eff} image. The average Z_{eff} values of nickel and copper foil agree with Z-number within 5%, which is high enough to identify elements.

	Measured (Z_{eff})	Atomic number
Aluminum	14.6	13
Iron	25.4	26
Nickel	27.9	28
Copper	28.8	29

Table 2 Measured Z_{eff} value and atomic number (Z) of each metal foil

号に正しく対応し,アルミ,鉄,ニッケル,銅の順に明る くなっていることがわかる。また,折り曲げて二重にした 領域においても濃淡はほとんど変化していないことから, Z_{eff}値は理論通りに被写体の厚さに無関係になっているこ とがわかる。

Table 2 には各金属箔の測定値と理論値を示す。銅とニ ッケルに関して,測定値は理論値と誤差 5%以内で一致し ており,単一元素で構成された被写体であれば,元素の種 類を同定可能な精度であることがわかる。なお,元素番号 が小さいほど差が大きくなっているが,この原因としてア ルミなどでは吸収が小さく,線吸収係数の検出誤差が大き いためと考えられる。

5. まとめと今後の展望

X線干渉法を用いて計測した吸収と位相コントラスト 像から,被写体の実効原子番号を可視化する Z_{eff} イメージ ング法を新たに開発した。KEK PF BL14Cにおいてエネ ルギー17.8 keV の単色放射光を用いて,金属箔を対象と した試用イメージングを行った結果,各元素の原子番号に 対応した濃淡を示す Z_{eff} 像の取得に成功した。また,ニッ ケル及び銅の Z_{eff} 値は理論値と誤差5%以内で一致してお り,被写体が単一元素で構成されている場合は元素の種類 まで同定できる精度であることがわかった。今後はComputed Tomography と組み合わせた3次元観察への適用を 進めると同時に,生体等を対象とした各種試料への応用を 検討する予定である。本法により材料開発や病気の診断に おいて,被写体の元素組成変化という全く新しい指標に基 づく各種の評価が可能になると期待される。

謝辞

本研究における放射光用いた実験は、高エネルギー加速 器研究機構放射光施設のG型課題2012G148,及び 2013G584のもとで実施した。

参考文献

- Z. Qi, J. Zambelli and GH. Chen: Phys Med Biol. 55, 2669 (2010).
- T. Mukaide, M. Watanabe, K. Takada, A. Iida, K. Fukuda and T. Noma: Appl. Phys. Lett. 98, 111902 (2011).
- A. Momose, S, Kawamoto, I. Koyama, Y, Hamaishi, K. Takai and Y. Suzuki: Jpn. J. Appl. Phys. 42, L866 (2003).
- 4) A. Momose and J. Fukuda: Med. Phys. 22, 375 (1995).
- T. J. Davis, D. Gao, T. E. Gureyev, A. W. Stevenson and S. W. Wilkins: Nature **373**, 595 (1995).
- A. Snigirev, I. Snigirev, V. Kohn, S. Kuznetsov and I. Schelokov: Rev. Sci. Instrum. 66, 5486 (1995).
- A. Yoneyama, J. Wu, K. Hyodo and T. Takeda: Med. Phys. 35, 4724 (2008).
- 8) A. Yoneyama, R. Baba, K. Hyodo and T. Takeda: The European Congress of Radiology 2015, C-0531.
- A. Yoneyama, A. Momose, E. Seya, K. Hirano, T. Takeda and Y. Itai: Rev. Sci. Instrum. 70, 4582 (1999).
- A. Yoneyama, A. Momose, I. Koyama, E. Seya, T. Takeda, Y. Itai, K. Hirano and K. Hodo: J. Synchrotron. Rad. 9, 277 (2002).
- A. Yoneyama, T. Takeda, Y. Tsuchiya, J. Wu, T. T. Lwin, A. Koizumi, K. Hyodo and Y. Itai: Nucl. Instrum. Methods Phys. Res. A 523, 217 (2004).
- 12) A. Yoneyama, T. Takeda, Y. Tsuchiya, J. Wu, T. T. Lwin and K. Hyodo: AIP Conference Proceedings 705, 1299 (2004).
- 13) K. Noda-Saita, A. Yoneyama, Y. Shitaka, Y. Hirai, K. Terai, J. Wu, T. Takeda, K. Hyodo, N. Osakabe, T. Yamaguchi and M. Okada: Neuroscience 138, 1205 (2006).
- 14) S. Takeya, K. Honda, A. Yoneyama, K. Ueda, K. Hyodo, T. Takeda, H. Mimachi, M. Takahashi, T. Iwasaki, K. Sano, H. Yamawaki and Y. Gotoh: J. Phys. Chem. C, 115, 16193 (2011).
- 高松大郊, 米山明男, 平野辰巳: KEK Proceedings 2014-9, 31 (2014).
- A. Yoneyama, K. Hyodo and T. Takeda: Appl. Phys. Lett. 103, 204108 (2013).
- 17) F. W. Spiers: Br. J. Radiol 19, 52 (1946).
- 18) 米山明男,竹谷 敏,兵藤一行,上田和浩,武田 徽:顕 微鏡 46,71 (2011).
- 19) A. Yoneyama, A. Nambu, K. Ueda, S. Yamada, S. Takeya, K. Hyodo and T. Takeda: J. Phys.: Conference Series 425, 192007 (2013).
- 米山明男,竹谷 敏,兵藤一行,武田 徹:応用物理 83, 737 (2014).

著者紹介

米山明男

㈱日立製作所研究開発グループ 主任研究 員 E-mail: akio.yoneyama.bu@hitachi.com

専門:X線イメージング 【略歴】

1994年東京農工大学大学院工学研究科博 士前期課程修了。同年㈱日立製作所中央研 究所に入社。2006年より現職。博士(学 術)。

馬場理香

㈱日立製作所研究開発グループ 主任研究 員

E-mail: rika.baba.rh@hitachi.com 専門:医用画像処理学 **[略歴]**

1985年4月,京都大学農学部農業工学科 入学。1989年3月,京都大学農学部農業 工学科卒業。1991年3月,京都大学大学 院農学研究科農業工学専攻修士課程修了。 1991年4月,㈱日立製作所中央研究所入 所。2011年3月,東京工業大学大学院理 工学研究科機械制御システム専攻博士課程 修了。

竹谷 敏 国立研究開発法人産業技術総合研究所物 質計測標準研究部門 精密結晶構造解析グ

ループ 主任研究員 E-mai: s.takeya@aist.go.jp 専門:X線回折 [略歴]

2000年北海道大学大学院地球環境科学研 究科博士課程修了。同年より工業技術院・ 北海道工業技術研究所・資源エネルギー基 礎工学部,研究員。2001年組織改編に伴 い,)産業技術総合研究所・エネルギー利 用研究部門,研究員。2004年,同研究所 ・計測フロンティブ研究部門,研究員。 2007年,同部門主任研究員。2015年より 現職。2006年-2007年カナダ National Research Council Canada,客員研究員。

兵藤一行

高エネルギー加速器研究機構物質構造科学 研究所 准教授 E-mail: kazuyuki.hyodo@kek.jp 専門: 医学物理学 [略歴]

筑波大学大学院博士課程医学研究科修了 後,高エネルギー物理学研究所勤務,組織 改編を経て2012年より現職。

武田 徹

北里大学医療衛生学部 教授 E-mail: t.takeda@kitasato-u.ac.jp 専門:核医学 **[略歴]**

1985年筑波大学大学院医学研究科修了 (医学博士)。同年筑波大学附属病院医員。 1987年筑波大学臨床医学系講師。2004年 筑波大学大学院人間総合科学研究科講師。 2009年より現職。

Development of Z_{eff} imaging using X-ray crystal interferometer

Akio YONEYAMA Rika BABA Satoshi TAKEYA Kazuyuki HYODO Tohoru TAKEDA		Hitachi Ltd., 1–280 Higashikoigakubo, Kokubunji 185–8601, Tokyo, Japan Hitachi Ltd., 1–280 Higashikoigakubo, Kokubunji 185–8601, Tokyo, Japan National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1–1–1 Higashi, Tukuba 305–8565, Japan High Energy Accelerator Research Organization, 1–1 Oho, Tsukuba 305–0801, Japan Allied Health Sciences and Graduate School of Medical Science, Kitasato Universi- ty, 1–15–1 Kitasato, Minami-ku, Sagamihara 252–0373, Japan				
				Abstract	A novel elemental imaging using X-ray interferometry has been developed. An elemental map is calculable with the ratio of an absorption and phase-contrast image, since the atomic number of a single-element sample (effective atomic number (Z_{eff}) for a plural-element sample) corresponds to the ratio of the real to imaginary part of the complex refractive index. Several metal foils underwent feasibility observations by a imaging system fitted with two-crystal X-ray interferometer, providing accurate detection of intensity and phase-shift. The obtained Z_{eff} image shows that aluminum, iron, nickel, and copper foil were clearly distinguished, and nickel and copper's Z_{eff} coincide with ideal Z within 5%.	