トピックス

全反射結像ミラーを用いた色収差のない X 線顕微鏡

松山智至

大阪大学大学院工学研究科精密科学·応用物理学専攻 〒565-0871 大阪府吹田市山田丘 2-1

要旨 X線結像では色収差による分解能の劣化が問題となっていた。これを解決するために、色収差のない結像光学系、 つまり、4枚の全反射ミラーで構成された Advanced Kirkpatrick-Baez ミラー光学系を開発した。SPring-8 でテ ストしたところ、10 keV 程度の硬 X線領域において、50 nm の空間分解能を色収差なく達成した。長時間の安定性 テストや XAFS イメージングの結果より、開発した結像光学系が実用レベルに達していることを確認した。また、 さらにコンパクトな顕微鏡を実現するために、凹面鏡と凸面鏡で構成される新しい結像光学系を提案した。本トピ ックス記事では、これらの開発の詳細について説明する。

1. はじめに

色収差という言葉を知っている人はどれくらいいるだろ うか?カメラが好きな人は当然知っているとして,それ以 外の人はあまり知らないのではないだろうか。高校の物理 を勉強したことがある人は「光の屈折角は波長によって異 なる」というスネルの法則を知っているだろう。プリズム ではまさにこの現象を使って光を分散させる。単純なレン ズでは,想定した波長の光以外には設計通りの結像はでき ないため,色がにじんだようなボケが発生するはずであ る。しかし,iPhoneのカメラやコンパクトデジカメ,一 眼レフカメラで普通に撮影してみても,非常に鮮明にカ ラー像を記録することができる。可視光領域では,屈折率 と分散の異なるガラスを組み合わせた色消しレンズの登場 によってこの色収差の問題を克服している。現在のカメラ レンズや顕微鏡レンズでは,色収差は見ようと思ってもな かなか見ることができないものとなった。

X線領域では、未だにこの色収差が問題となっている。 X線結像は、回折レンズ(フレネルゾーンプレート)や 屈折レンズ(複合屈折レンズ)によって一般に行われてい る。このような単純なレンズでは、当然色収差が発生す る。それぞれの焦点距離fは波長λを用いて以下のように 書ける¹⁾。

フレネルゾーンプレート:
$$f = \frac{2r_N \Delta r_N}{\lambda}$$
 (1)

(ただし、 r_N はレンズ半径、 Δr_N は最外輪帯幅)

屈折レンズ:
$$f = \frac{R}{2N\alpha\lambda^2}, \alpha = \frac{r_e N_e}{2\pi}$$
 (2)

(ただし, Rはレンズ半径, Nはレンズの数, r_e は 古典電子半径, N_e は単位体積当たりの電子数であ る。) λがfの計算式に含まれるため,波長によって焦点距離は 変化する。入射光の波長を掃引する場合(XAFS イメー ジング)や多波長 X線を取り扱う(白色 X線の結像,蛍 光 X線結像)場合では,色収差による分解能の低下は避 けられない(fの変化が焦点深度を超えるとボケとなって 現れるため,高分解能(大きな開口数)なレンズほど色収 差は効く)。

本誌では,高分解能かつ色収差のない X 線結像という 非常にわがままな実験に応えることができる新しい結像光 学系について解説する。本光学系を今後導入したいと思っ て頂くために,できるだけ実用的な情報を載せるように努 めたつもりである。また,現在開発中の凹面鏡と凸面鏡を 使った新しい結像光学系についても述べる。最後に少し脇 に逸れた話題として,結像ミラーを集光光学系として使用 した場合のメリットにも言及したい。

2. 全反射現象を利用した反射型レンズ

X線領域では、色消しレンズの原理では広い波長領域 にわたって色収差を補正することは難しい²⁾。その代わり に、波長依存性がほとんどなく光の軌道を曲げることがで きる全反射ミラーが有効に機能する。しかし、X線集光 で良く使われるKirkpatrick-Baez(KB)ミラー(2枚の 全反射ミラーを直交直列に配置した光学系)³⁾(Fig.1)で は、大きなコマ収差によって視野が非常に狭くなるため X線結像では問題である⁴⁾。その結果、もっぱら集光(光 軸近傍の縮小結像)でしかKBミラーは用いることはでき ない。コマ収差の有無はAbbeの正弦条件⁵⁾をチェックす ることで簡単に調べることができる。Abbeの正弦条件に よると、コマ収差なしのためには結像素子(レンズや結像 ミラー)のいかなる場所の像倍率も一定でなければならな い。通常のレンズは主面と光軸が直交しているため問題に はならないが、傾いたレンズや斜入射光学系であるX線

Fig. 1 (Color online) Kirkpatrick-Baez (KB) mirror (upper) and Wolter mirror (lower). F_1 and F_2 represent the two foci of the ellipse. Also, F_2 and F_3 on a Wolter mirror mean the two foci of the hyperbola. The ellipse and hyperbola have the common focus of F_2 .

Fig. 2 (Color online) Explanation of comatic aberration. Normalincidence lens (upper), inclined lens (middle) and a grazingincidence mirror (lower). Inclined lenses and grazing-incidence mirrors have different magnifications over their optical devices, which lead to comatic aberration.

全反射ミラーでは,像倍率は結像素子の中で一様にならないため(Fig. 2),大きなコマ収差が発生する。斜入射光学系のコマ収差を補正するために,1952年に楕円(宇宙では放物)と双曲を組みあわせた光学系(Wolterミラー)がHans Wolterによって提案された(Fig. 1)⁶⁾。斜入射光学系におけるコマ収差補正のポイントは反射回数である。Wolterミラーのように2回の反射があればそれぞれに正負のコマ収差を付与できるので,これらをキャンセルさせることができる。これに加えて,本光学系はいかなるパス

を考えても光路長が一定であり、かつ、1 点から出た光を もう一度1点に集めるというレンズの基礎条件を満たし ている (これは KB ミラーも満たしている)。このため, 本光学系は広い視野を鮮明に結像することができる。一方 で,Wolter ミラーでは,筒状ミラーの内面が反射領域で あるため、その作製が困難であることが知られている。内 径数 mm,長さ50~100 mm の筒状ミラーの内面を形状計 測し精密加工することがいかに難しいか想像に難くない。 このような問題を解決する光学系として、1996年に Wolter ミラーを KB ミラーのように配置する手法 (Advanced Kirkpatrick-Baez (AKB) ミラー) が兒玉氏らに よって提案された(Fig. 3)7)。この光学系では、縦横の結 像を別々のミラーで実行するという KB ミラーの手法が踏 襲されている。ほとんど平らなミラーで構成されているた め、そのミラーは比較的作製しやすいというメリットがあ る。現状の結像光学系の中では,波面収差(≒作製誤差), コマ収差、色収差の問題を解決できる唯一の解であると考 える。

3. AKB ミラー開発の難しさ

もちろん AKB ミラーにもデメリットは存在する。それ はミラー作製とミラーアライメントの問題である。単一ミ ラーにおいてミラー作製に許容される作製誤差は,以下の ような Bragg の式で簡易に見積もることができる⁸⁾。

$$\boldsymbol{\Phi} = \frac{4\pi dsin\theta}{\lambda} \tag{3}$$

ここで、**Φ**はミラーの形状誤差が波面に与える位相シ

Fig. 3 AKB mirror. Separated-mirrors type (upper) and Monolithic-mirrors type (lower).

フト(波面収差), dは形状誤差, θ は斜入射角である。 ϕ は $\pi/2$ まで許容されるという Rayleigh の1/4波長則⁵⁾に従 えば,許容形状誤差であるdを計算できる。しかし,複 数のミラーで構成されている AKB ミラーでは,反射を経 るごとに波面収差は蓄積される(縦結像と横結像のミラー は互いに独立なので,波面収差の蓄積は同じ方向のミラー でのみ起こる)。そのため,許容誤差は KB ミラーのそれ よりも約2倍厳しいものとなる(正確を期すなら波動光 学シミュレーションを実行する)。反射率も同様に考える ことができる。1枚あたりの反射率は Debye-Waller 因子 の式¹⁾によって rms 表面粗さから見積もることができる。 AKB ミラーは4回反射であることから,反射率ロスは4 乗で効くわけであるため,表面粗さに十分注意を払わなけ ればならない。

アライメントの問題はちょっと考えるだけで頭が痛くな る。2枚のミラーを使う KB ミラーでもアライメントが面 倒というのが一般の理解である^{9,10)}。ミラー枚数が4枚に 増えると自由度が倍増するため、さらに難しいはずであ る。開発の初期にこれらのアライメント軸のうちどこに注 意を払わねばならないのかについてシミュレータを使って 検討した^{11,12)}。平行度・直角度については KB ミラーと同 程度(数十マイクロラジアン)である(ペンタプリズムと オートコリメータで調整可能)が、2枚のミラー(双曲面 と楕円面)の相対関係(相対角,相対距離)には注意が必 要であることがわかった。これらは数百ナノメートル、数 マイクロラジアン程度で調整、維持されなくてはならない。 4枚のミラーを正確にアライメントするという戦略を初め に実施したところ、思っていたほどの顕微鏡性能を得るこ とはできなかった13)。放射光施設のように頻繁に装置を 出し入れするような場合には、毎回の調整が非常に煩わし く (ゼロから調整するのは数日かかる), また, これらの アライメントを長期間維持することが難しかった(専用 ビームラインで常設なら可能かもしれない)。

4. 結像ミラーの作製

このような問題に対して、1枚の基板上に楕円と双曲を 超精密に作製すること(一体型結像ミラー)(Fig. 3)でこ れを解決した^{14,15)}。このような一体型結像ミラーの使用は KBミラーとほとんど同じ手順で行えばよく、ビームライ ン担当者やユーザーにも受け入れやすいだろうと考えた。 また、楕円と双曲の相対関係の変化は像質に大きく影響す るため、この点が完全に固定されている一体型結像ミラー では、非常に安定な観察が可能となる。

X線ミラー設計のポイントは、結像性能と作製難易度 のバランスをとることである。結像性能を上げることとミ ラー作製の難易度は普通トレードオフの関係にある。初め に気を付けるポイントは曲率半径と斜入射角である。曲率 半径が小さいと形状計測に問題が生じる。普通、ミラーの 形状計測は干渉計(スティッチング干渉計(MSI¹⁶⁾, RADSI¹⁷⁾) やスローププロファイラー (LTP¹⁸⁾, NOM¹⁹⁾) が主に使われる。どれも平面形状ほど精度が高いため、小 さな曲率半径では計測精度が低下する。また、斜入射角が 大きいと許容誤差が厳しくなる(式(3)を参照)。誤差が 蓄積していく結像ミラーでは厳しい設計にはできない。ス ペースに余裕があれば、基板サイズを長くすることで、斜 入射角を小さくすることも可能である。もう一つのポイン トは、試料から遠い側の結像ミラーの設計にある。遠い側 のミラーと試料との間には、もう一方のミラーが配置され ているため、焦点距離を短く設計できない。開口数を考え るなら、おのずとミラー基板が長くなる。長いミラーの作 製にはコストと時間がかかるため、現実的な問題となる。 その場合は、試料に近い側の結像ミラーを短くし、開口数 を維持するために斜入射角を大きくする。それ以外にも像 倍率、作動距離、視野について検討し、十分な性能が発揮 できるかチェックする。このような設計上の試行錯誤を続 け、現実的な設計パラメータを見出さなくてはならない。

最終的に我々が設計したミラーパラメータの一例を Table 1にまとめた。作動距離は約35 mm であり,今後の 応用研究のために試料周りにスペースを残した。冷却器や

	Vertical	imaging	Horizontal imaging		
Shape	Hyperbola	Ellipse	Hyperbola	Ellipse	
a (m)*	$7.297 imes 10^{-2}$	$^{-2}$ 22.67 2.051 \times		22.57	
$b(m)^*$	1.101×10^{-3}	2.444×10^{-2}	3.111×10 ⁻⁴	1.356×10^{-2}	
Incident glancing angle (mrad)**	4.67	5.51	4.73	5.51	
Distance from object (mm)***	173	294	49.6	94.1	
Mirror area length (mm)	100	120	30	39	
Magnification factor	196		637		
Numerical aperture $(\times 10^{-3})$	1.44		1.51		

 Table 1
 Parameters of the AKB mirror optics. Reprinted from Ref.

 15.

* Ellipse $x^2/a^2 + y^2/b^2 = 1$ or hyperbola $x^2/a^2 - y^2/b^2 = 1$.

** Averaged over the whole mirror area.

*** At the center of the mirror area.

回転ステージなどを設置する余裕がある。今回は,像倍率 を大きくするという目的から結像面(カメラ位置)をミラー から45 m離れた位置に設けた。この結果,像倍率は637 倍(横)と196倍(縦)に達し,通常のX線カメラでも十 分50 nm以下の分解能が達成可能な見通しである。

ミラー作製についてはマニアな世界になるため詳細は省 くが、研磨を主にした加工法で前加工を進め、最終の仕上 げ加工は Elastic Emission Machining (EEM)法²⁰⁾を用い た。形状計測は、スティッチング干渉計^{16,17)}と3次元計測 装置を用いた。個々の非球面ミラーの形状は干渉計を、ミ ラー全体の形状は3次元計測装置をそれぞれ使って形状 計測を行った。最終的に得られた個々の非球面形状と全体 の形状を Fig. 4 と Table 2 に示す。Fresnel-Kirchhoff 回折 積分に基づいた波動光学シミュレーション¹¹⁾でその性能 をチェックしたところ、性能劣化はほとんどないことを確 認した。また、表面粗さは0.2 nm rms 程度と、反射率の 劣化はほとんどない見積である。最後に、ロジウムをコー ティングし X 線ミラーを完成させた。予想される反射率 は4回反射で約58%(@10 keV)である。

Fig. 4 (Color online) Developed AKB mirror optics. (a) Mirror arrangement. (b, c) Whole mirror shapes. (d) Shapes and residual shape errors on the each section. 'E-' and 'H-' represent the ellipse and hyperbola, respectively. 'Vert.' and 'Hori.' represent vertical and horizontal directions, respectively. Reprinted from Ref. 15.

Axis		Simulated tolerances		Measured errors	
		V	Н	V	Н
Relative angle (µrad)		+/-2	+/-7	2	2
Relative translation I (µm)		+/-0.75	+/-0.6	0.07	0.05
Relative translation II (µm)		+/-40	+/-35	20	8
Roll (µrad)		+/-40	+/-50	15	6

5. 顕微鏡システムの開発

性能テスト用に試作した顕微鏡は、照明光学系、試料ユ ニット(試料位置合わせ用),結像光学系,X線カメラか ら成る(Fig. 5)。本光学系は1つ面倒な問題を抱えてい る。ミラー光学系では反射を経るごとに光線の角度がずれ るわけであるが、これに加えて結像面がミラーから45m も離れているため,X線をカメラまで導くことが非常に 難しくなった。このため、照明光学系に大開口数を持つポ リキャピラリレンズを採用し、その淵の部分を照明光学系 として利用することで、収束と同時に軌道の偏向(20 mrad) も行った (Fig. 5)。一方で,ポリキャピラリレン ズは中心ほど集光性能とスループットが高い。この時のス ループットは15%程度で、集光径は100 µm 程度であっ た。この点はさらに改善しなくてはならない。試料ユニッ トには穴あきミラーと光学顕微鏡のセットを配置した。X 線を邪魔することなく光軸上から試料位置・状態を確認す ることができる。結像イメージを記録する2次元検出器 として,浜松ホトニクス社製のAA20MODとORCA-Flash4.0 (実効ピクセルサイズ: 3.1 µm) を用いた。これ は SPring-8 では比較的よく目にする間接撮像型の X 線カ メラであって、感度や耐久性の面で秀でている。もちろ ん,最近開発された高分解能X線カメラ(理研亀島氏ら によって開発されたもの21)や株式会社リガクから販売さ れているもの²²⁾等)であれば,45mの距離は必要となら ない。最近ではカメラ長6m (BL29XULのEH2実験ハ ッチですべてを完結できる程度の長さ)でも同等の性能を 発揮することに成功した23)が、今回は詳述を省略する。

6. デモ実験

本格的な観察の前に、ミラーと試料の微調整(フォーカ ス調整と視野調整)が必要である。フォーカス調整は試料 とミラー間距離の調整のことで、最もくっきり見えるフ ォーカスを探していく作業である。AKBミラーでは縦・ 横方向のフォーカスは別々に調整しなくてはならない。こ れと同時に、結像ミラーの入射角の調整(視野調整)を行 っていく。この調整はAKBミラーの視野の中心(光軸) に試料を入れることを意味する。レンズで考えるならレン ズの傾き調整である。AKBミラーは像面湾曲収差を持っ ているため、視野中心がカメラの中心に来ると、視野の外 側が対称にボケるためそれを認識できる。視野調整を行っ ていくとフォーカスもずれていくので、これらの調整を同 時並行で何度も繰り返し行っていく。

性能評価実験として、初めにテストチャート(XRESO-50HC, NTT AT Corporation)の観察を行った。このテス トチャートは、最小線幅50 nm の Siemens star(厚み500 nm のタンタル)を持つ。Fig. 6 は、フラットフィールド 補正(試料あり画像を試料なし画像で割る)を行った後の テストチャート像である。フラットフィールド補正は照明 光のムラやカメラの感度ムラを補正できるため、X線顕 微鏡や天体観察などでよく用いられる技術である。今回は 主には照明光ムラを消すために導入した。得られたX線 イメージは一目見て50 nm の構造が解像できていることが わかる。これは色収差のないX線顕微鏡において世界最 小記録である。さらに詳細に調べるために、コントラスト

Fig. 5 (Color online) Experimental setup (upper) and ray diagram around samples (lower). The figures were reprinted from Ref. 15 and Ref. 14, respectively.

解析を実施した。コントラストにはいろいろな定義が存在 するが、今回は以下の式²⁴⁾を用いた(画像の対象領域内 の強度変調の最大値と最小値を I_{max} と I_{min} とした)。

$$Contrast = \frac{I_{max} - I_{min}}{I_{max}} \tag{4}$$

また,試料の透過率から算定される理想的なコントラスト で除算することで,規格化されたコントラストを得た。こ れはつまり,1は理想的なコントラストが得られたという ことである。「どの顕微鏡が一番空間分解能がいいのか?」 に答えることは,「誰が一番足が速いのか」を決めること とよく似ていると感じている。つまり,距離は100 m なの か50 m なのか,追い風はどこまで許されるのか,スパイ クを履いていいのか…と言った様々な競争条件がありえる からである。このような場合,通常は国際陸連が公認する 100 m 競争のようなもっともメジャーな条件で最良記録に なった人を選ぶものである。我々が開発した顕微鏡がどれ くらいの空間分解能を有しているのかを正確に検証するた めに,結像型X線顕微鏡では比較的よく採用される, 「26.5%の規格化コントラスで解像できた最小構造」を達

成した空間分解能とした24)。これはレンズのような円形 開口の結像素子で得られるレイリー基準と一致する。2つ の点を結像する際に、一方の回折像の第一極大点(メイン ピーク)と他方の回折像の第一極小点が重なるような2 点間の距離に相当し、円形開口レンズではこの時のコント ラストが26.5%である。これに従うなら、今回の空間分解 能は縦61 nm, 横52 nm ということになる。縦方向が横方 向よりも空間分解能が悪かった理由の一つとして、像倍率 が小さかったためカメラのボケに影響されたことによると 考えた。X線カメラのボケ(予想値)をデコンボリュー ションで取り除いた結果を Fig. 6(c) に示す。確かに空間分 解能は向上し、縦横の違いもほとんどなくなった。デコン ボリューション後においては、今回は顕微鏡の分解能が用 いたテストチャートの限界で制限されていた。さらに細か いチャートを用いれば40 nm くらいは十分なコントラスト で見えたと推測している。

また,入射X線エネルギーを変化させることで色収差 についても調査した¹⁵⁾。**Fig.7**を見るとノイジーに見える 部分もあるが(空気吸収と試料透過率のエネルギー依存性 による),像質自体は全く変化していないことが分かる。 より詳細に像質変化を見るために,Power Spectrum

Fig. 6 (Color online) Bright-field X-ray image of (a) whole image and (b) magnified image. (c) X-ray image after deconvolution processing. (d) Results of contrast analysis. Exposure = 500 s. X-ray energy = 9.881 keV. Bar = 2 μ m. Reprinted with modifications from Ref. 15 under CC BY 4.0 License.

Fig. 7 (Color online) X-ray energy dependence between 8 and 12 keV. (a) Bright-field X-ray images. (b) Results of PSA. Exposure is shown below each image. Bar = $2 \mu m$. Reprinted from Ref. 15.

Fig. 8 (Color online) (a) SEM image. (b) X-ray image averaged over XAFS images between 10,159 and 10,655 eV, showing the existence of zinc (Zn) and tungsten (W) particles. (c, d) Distributions of standard deviation (σ) of a series of XAFS images, showing the drastically changing area for image contrast during the XAFS measurement, i.e. Zn and W distributions, respectively. (e) Peak-shift map to identify W and tungsten carbide (WC). Red and blue regions represent W and WC, respectively. (f) XAFS spectra averaged over a 100 × 100 nm² square area. Energy scan: (c) 9640–9690 eV every 2 eV, and (d) 10195–10225 eV every 1 eV. (f) Solid lines represent the obtained spectra on the different particles. Dash lines represent the reference spectra, which were obtained from the XAFS database (Institute for Catalyst, Hokkaido University) (data information: sample=Zn foil; correspondence=Kiyotake Asakura; date=2006.12.13) for Zn, and the article (Fig. 2) published by Uo et al²⁷⁾. for W. All images were obtained with an exposure of 60 s. Bar=2 μ m. Reprinted from Ref. 15.

Analysis (PSA, 得られた像をフーリエ変換し, 逆空間で 比較検討する手法)を実施した。この結果からもノイズ以 外に変動はないことが窺える。さらに, 長時間(約24時 間)の安定性についても評価した¹⁵⁾。実像からも PSA か らも像質の変化が検出されなかった(図省略)。このよう な長期間の安定性は, 楕円と双曲を一つの基板に作製した ことによる賜物であって,実用的な実験をする上で最も重 要な特性の一つである。

実用的なデモ実験として、ミクロンサイズの微粒子(亜 鉛(Zn)、タングステン(W)、タングステンカーバイト (WC))のXAFSイメージングを実施した(Fig. 8)¹⁵⁾。実 験では、試料像と試料なし像を撮影しX線エネルギーを 変化させるというルーチンを繰り返した。得られたX線 像はフラットフィールド補正を行い、さらに、試料の位置 ドリフトを補正するためにパターンマッチングを利用した ドリフト補正を行った。このように、単純にエネルギーを 変化させるだけで簡単にXAFSイメージを取得すること ができ、吸収端の違いを利用した元素識別(Fig. 8(c), 8 (d))やXANESスペクトルの違いを利用した状態識別 (Fig. 8(e))も可能であった。

7. さらなる展開 ―コンパクト化―

AKB ミラーは,分解能,スループット(反射率),色 収差なしという点から非常に優れているが,一方で,像倍 率が小さいという問題を抱えている。これは,結像光学系 の主面(非常に薄いレンズで等価な光学系を構築した場合 のレンズを置く位置,焦点距離の基準)が楕円ミラーと双 曲ミラーの中間あたりにあるためである。この結果,焦点 距離は双曲ミラー自体の長さより物理的に短くできない。 このような焦点距離の問題は試料から遠方の結像ミラーで より顕著になる。少なくとも他方の結像ミラーの長さ+自 分の双曲ミラーの長さ以上の焦点距離となってしまうわけ である。ゆえに,AKBミラーの像倍率は小さく,これを 補うためにカメラ位置をミラーから十分離さなければ所望 する像倍率を達成できない。

この問題を解決するために,楕円凹面と双曲凸面で構成 される新しい結像光学系を提案した²⁵⁾。本光学系はFig.9 に示すように,主面の位置が楕円ミラーと試料の間に位置 する。この結果,焦点距離は短くなり,短いカメラ長でも 十分な像倍率を達成することが可能となる。このような光 学系は,可視光レンズ分野ではテレフォトレンズやレトロ フォーカスレンズ,望遠鏡ではCassegrain光学系や Scwarzschild光学系,Wolter(II,III型)光学系と同じ コンセプトである。加えて,通常のAKBミラーと同様に ほとんど平らなミラーで構成されるため,ミラー作製の難 易度を抑えたまま,性能向上を図ることが可能となる。硬 X線領域では非常に理にかなった光学系であると言える。

現在,本光学系の開発を急ピッチで進めているところで ある。最近,1次元結像ミラーを試作し,縮小結像テスト を実施したところ,その性能はほとんど回折限界の性能を 達成していた²⁶⁾。しかも,本光学系はたった2mの距離 で310倍の倍率を達成しており,予想通りの短い焦点距離 を持つことが確認された。今後,このような光学系を用い

Fig. 9 (Color online) (a) Conventional AKB mirror optics and (b) newly proposed imaging optics.

Fig. 10 (Color online) (a) Relationship between experimental FWHMs of focused beam and incident angle errors for an elliptical mirror and a 1D Wolter mirror. (b, c) Simulated position of the focused beam by an elliptical mirror and a 1D Wolter mirror when their mirrors have incident angle errors of $+/-1 \mu$ rad. The figure (a) was reprinted from Ref. 4.

ることで短いビームラインであっても大拡大倍率を持つ結 像実験が実施でき,また,実験室規模でかつ50 nm 以下の 空間分解能を持つ結像顕微鏡が開発できるようになる。

8. 別の展開 ―結像ミラーを集光ミラーとして使う―

最後に、少しだけ集光光学系の話をしたい。集光だけな ら KB ミラーで十分だと序章で述べた。しかし、KB ミ ラーはコマ収差のため、光軸から離れた点を結像(つま り、設計入射角からずれた角度で集光)させることはでき ない。この結果、KB ミラーは入射角変化に非常に敏感と なる。多くのビームラインではビームライン担当者がつき っきりでミラー入射角の調整をしているのではないかと思 う。このような問題は結像ミラーを用いることで解決可能 である。Fig. 10に実際に集光ミラー(楕円ミラーのみ)と 結像ミラー(1次元 Wolter ミラー)を使って測定された 集光径と入射角誤差の関係をプロットしている⁴⁾。このよ うに集光ミラーでは入射角のずれに敏感であるが結像ミ ラーはこれに鈍感である。さらに、結像ミラーはミラーの 角度方向の振動に対しても鈍感となる。通常の集光ミラー は入射角が Δθ 変化すれば、焦点面でのビームポジション が2LA0変化する(Lはミラーから焦点までの距離)。振 動が問題で回折限界まで集光できないとは、このような状 況にあることが多い(もちろんミラーや試料の並進振動も 影響する)。しかし、結像ミラーでは、2回反射の効果で 角度ずれは自動的に補正される(1枚目のミラーに入射角 大でX線が入射すれば、2枚目のミラーでは必ず入射角 小で入射する)。我々の作製した結像ミラーでは、だいた い楕円ミラー単独(同じような焦点距離を仮定)の場合よ り1/10程度しかビーム軌道はシフトしない(Fig. 10)。室 温を精密に調整できないビームラインや振動が問題になる

ビームラインでは、AKB ミラーを集光光学系として利用 することをお勧めしたい。

9. おわりに

全反射結像ミラーから成る色収差のない反射型レンズ は、すでに実用フェーズに到達したことを報告した。現在 のところ,50 nm の空間分解能は達成可能である。この技 術の先には、2つの面白い応用がある。1つは、最先端 (次世代) X線光源 (SACLA, SPring-8-II や SLiT-J な ど)を駆使して行われる X線顕微分光である。これまで の光源では点でしか分光分析していなかったものを、面で 行うことができれば、モノ・現象をさらに別の見方で理解 できるようになるだろう。もう一つの展開は、実験室や工 場で利用できる50 nm の空間分解能を持つ X 線顕微鏡の 開発である。お手軽に、非破壊でかつ高空間分解能で試料 内部を見ることができる汎用的なX線顕微鏡が登場すれ ば、今後様々な分野で使われるようになるのではないかと 期待している。色収差のない X 線結像は世界でもまだほ とんど利用されていない新しい技術である。本誌にて紹介 させていただくことで, 普及に弾みがつくことを願ってい る。

謝辞

本研究・開発の遂行のために多大なサポートを頂いた, 大阪大学 山内和人教授,佐野泰久准教授,山田純平氏, 波多健太郎氏,山内研結像ミラー Gr.の卒業生,株式会社 ジェイテックコーポレーション 岡田浩巳氏,理化学研究 所 石川哲也センター長,矢橋牧名グループディレク ター,香村芳樹ユニットリーダーに深く感謝致しま す。BL29XUL での実験は理化学研究所の手厚い支援の下 実施されました。本研究は,JST 先端計測分析技術・機 器開発プログラムとA-STEP (ステージII),科学研究費 補助金 (JP26286077, JP17H01073, JP25600140, JP26247031),コニカミノルタ画像科学奨励賞,島津科学 技術振興財団研究開発助成金の支援の下実施されました。

参考文献

- 1) 大橋治彦,平野馨一:放射光ビームライン光学技術入門, 日本放射光学会 (2008).
- 2) Y. Wang, W. Yun and C. Jacobsen: Nature 424, 50 (2003).
- P. Kirkpatrick and A. V Baez: J. Opt. Soc. Am. 6, 766 (1946).
- S. Matsuyama, N. Kidani, H. Mimura, J. Kim, Y. Sano, K. Tamasaku, Y. Kohmura, M. Yabashi, T. Ishikawa and K. Yamauchi: Proc. SPIE 8139, 813905 (2011).
- M. Born and E. Wolf: Principles of Optics, Cambridge University Press (1999).
- 6) H. Wolter: Ann. Phys. 445, 94 (1952).
- R. Kodama, N. Ikeda, Y. Kato, Y. Katori, T. Iwai and K. Takeshi: Opt. Lett. 21, 1321 (1996).

- H. Mimura, S. Handa, T. Kimura, H. Yumoto, D. Yamakawa, H. Yokoyama, S. Matsuyama, K. Inagaki, K. Yamamura, Y. Sano, K. Tamasaku, Y. Nishino, M. Yabashi, T. Ishikawa and K. Yamauchi: Nat. Phys. 6, 122 (2010).
- S. Matsuyama, H. Mimura, H. Yumoto, K. Yamamura, Y. Sano, K. Endo, Y. Mori, Y. Nishino, K. Tamasaku, T. Ishikawa, M. Yabashi and K. Yamauchi: Rev. Sci. Instrum. 76, 83114 (2005).
- 10) S. Matsuyama, H. Mimura, H. Yumoto, H. Hara, K. Yamamura, Y. Sano, K. Endo, Y. Mori, M. Yabashi, Y. Nishino, K. Tamasaku, T. Ishikawa and K. Yamauchi: Rev. Sci. Instrum. 77, 93107 (2006).
- S. Matsuyama, M. Fujii and K. Yamauchi: Nucl. Instr. Meth. Phys. Res. A 616, 241 (2010).
- 12) S. Matsuyama, N. Kidani, H. Mimura, Y. Sano, Y. Kohmura, K. Tamasaku, M. Yabashi, T. Ishikawa and K. Yamauchi: Opt. Express 20, 10310 (2012).
- 13) S. Matsuyama, Y. Emi, H. Kino, Y. Kohmura, T. Ishikawa and K. Yamauchi: Opt. Express 23, 9746 (2015).
- S. Matsuyama, H. Kino, S. Yasuda, Y. Kohmura, H. Okada, T. Ishikawa and K. Yamauchi: Proc. SPIE **9592**, 959208 (2015).
- S. Matsuyama, S. Yasuda, J. Yamada, H. Okada, Y. Kohmura, M. Yabashi, T. Ishikawa and K. Yamauchi: Sci. Rep. 7, 46358 (2017).
- 16) K. Yamauchi, K. Yamamura, H. Mimura, Y. Sano, A. Saito, K. Ueno, K. Endo, A. Souvorov, M. Yabashi, K. Tamasaku, T. Ishikawa and Y. Mori: Rev. Sci. Instrum. 74, 2894 (2003).
- 17) H. Mimura, H. Yumoto, S. Matsuyama, K. Yamamura, Y. Sano, K. Ueno, K. Endo, Y. Mori, M. Yabashi, K. Tamasaku, Y. Nishino, T. Ishikawa and K. Yamauchi: Rev. Sci. Instrum. **76**, 45102 (2005).
- 18) P. Takacs: Proc. SPIE 749, 59 (1987).
- 19) F. Siewert, T. Noll, T. Schlegel, T. Zeschke and H. Lammert: AIP Conference Proc. 705, 847 (2004).
- 20) K. Yamauchi, H. Mimura, K. Inagaki and Y. Mori: Rev. Sci. Instrum. 73, 4028 (2002).
- 21) T. Kameshima, T. Sato, T. Kudo, S. Ono, K. Ozaki, T. Katayama, T. Hatsui and M. Yabashi: AIP Conference Proc. SRI2015 1741, 040033 (2016).
- 22) https://www.rigaku.com/en/products/detectors/micron
- 23) 松山智至,安田周平,山田純平,岡田浩巳,香村芳樹,矢 橋牧名,石川哲也,山内和人:第30回放射光学会年会・放 射光科学合同シンポジウム,5D003 (2017).
- 24) S.-R. Wu, Y. Hwu and G. Margaritondo: Materials 5, 1752 (2012).
- 25) J. Yamada, S. Matsuyama, Y. Sano and K. Yamauchi: Appl. Opt. 56, 967 (2017).
- 26) J. Yamada, S. Matsuyama, S. Yasuda, Y. Sano, Y. Kohmura, M. Yabashi, T. Ishikawa and K. Yamauchi: Proc. SPIE 10386, 103860C (2017).
- 27) M. Uo, K. Asakura, K. Watanabe and F. Watari: Chem. Lett. **39**, 852 (2010).

著者紹介

松山智至 大阪大学大学院工学研究科精密科学・応用 物理学専攻 助教 E-mail: matsuyama@prec.eng.osaka-u. ac.jp

専門:X 線顕微鏡,超精密加工 【略歴】

2007年 大阪大学大学院工学研究科精密 科学専攻博士課程修了,工学博士。2007 年3月より大阪大学大学院工学研究科精密 科学・応用物理学専攻 助教。

Achromatic X-ray microscope based on totalreflection imaging mirrors

Department of Precision Science & Technology, Graduate School of Engineering, Osaka University, 2–1 Yamadaoka Suita-shi, Osaka 565–0871, Japan

Abstract There is a problem that spatial resolution of X-ray microscopes is degraded by chromatic aberration. To resolve the problem, achromatic imaging optics based on four total-reflection mirrors (i.e. an advanced Kirkpatrick-Baez mirror optics) was developed. Performance tests performed in SPring-8 revealed that the developed microscope can provide 50-nm spatial resolution without chromatic aberration at the hard X-ray region ranging around 10 keV. Also, long-term stability tests and XAFS (X-ray absorption fine structure) imaging showed that it can reach the practical level. In addition, a novel X-ray imaging optics consisting of concave and convex mirrors was proposed to realize compact microscopes. Here, we describe the details of the developments.