特 集 赤外自由電子レーザーの現状,利用研究と展望

遠赤外ジャイロトロン施設における装置開発ならび に応用展開

山口裕資

福井大学遠赤外領域開発研究センター 〒910-8507 福井県福井市文京3丁目 9-1

ジャイロトロンは、テラヘルツ帯において高出力かつ連続発振が可能な唯一の電子管として知られる。福井大学で は、テラヘルツ帯の電磁波源の開発に資すべく、ジャイロトロンの高度化研究が進められている。本稿では、はじ めにジャイロトロンの仕組みを概観し、開発の現状と課題、そして応用展開について紹介する。

1. **はじめに**

要旨

ジャイロトロンは、磁場中の電子の回転運動を電磁波に 結合させることで励振をうる、サイクロトロン共鳴メー ザー作用(Cyclotron Resonance Maser: CRM)に基づく 電子管である。歴史的には、豪州の天文学者 Twiss によ る CRM の理論予測(1958年)¹⁾、米国の Hirshfield らに よる CRM の実験的検証(1964年)²⁾を経て、旧ソ連の Gaponov らがマグネトロン入射型電子銃と樽型の空胴を 組み合わせて電子管を構成し、ジャイロトロンと命名した こと(1977年)³⁾に端を発すると言われる。

ジャイロトロンが誕生した時代には、核融合発電の実現 を目指したプラズマの磁場閉じ込めの研究が、世界中で進 められていた。高密度の磁化プラズマにおいて、特に電子 を加熱するために、数十 GHz を超える周波数で大電力の 電磁波源が求められたことから、その可能性を秘めたジャ イロトロンへの注目が集まった⁴。その後、核融合の研究 に要求される周波数と出力を実現すべく、ジャイロトロン の研究開発は急速に進み、それとともに核融合プラズマの 性能も向上するという歴史を辿っている。

我国でも1970年代に、核融合研究へ利用するためのジャイロトロンの開発が始まっている⁵⁾。そして,エネル ギー回収技術による効率50%超の実現⁶⁾。人工ダイヤモン ド真空窓の採用による1MW 超の放射出力の実現⁷⁾等,世 界を牽引する技術的ブレイクスルーが成されてきた。近年, 2025年の稼働を目標とする国際熱核融合実験炉(ITER) での利用に向けた,170 GHz の周波数で1MW 超の定常 発振が可能な管が完成されている⁸⁾。

他方,いわゆる"テラヘルツギャップ"の開拓を狙った 高周波数化もまた,ジャイロトロンの研究開発の強い動機 となっている。福井大学・遠赤外領域開発研究センター (以後,遠赤センターと表記)は、より高い周波数のジャ イロトロンを実現し応用展開を図る拠点の一つとなってい る⁹。2006年には、遠赤センターの出原らにより1THz を超える発振が実証され、同周波数帯の波源となりうることが示された¹⁰⁾。近年、国内外の機関等と連携し、高周 波ジャイロトロンの応用展開を進めている。

2. ジャイロトロンの概要

2.1 マイクロ波管とテラヘルツギャップ

ジャイロトロンは,真空に排気された管の内部に電流を 発生させる装置(電子管)の一種である。特に,電子から 高周波数の電磁波へのエネルギー変換を目的とした電子管 は,マイクロ波管などと呼ばれ,長い開発の歴史があ る¹¹⁾。電子と波動電場を効率よく相互作用させるには, ある方向に運動する電子が,同じ方向の波動電場を,波乗 りのごとく定常とみなすことができる状態を作らなければ ならない。しかし,電子を光速まで加速することは不可能 であり,波動電場と電子の運動を同期させるための工夫が 求められる。

特に数十 GHz を超える高い周波数での動作を狙ったマ イクロ波管(進行波管や後進波管,そしてマグネトロンな ど)では、従来、加速された電子ビームと同じ方向へ伝播 する電磁波の位相速度を遅くする構造(遅波構造)が研究 されてきた。遅波構造を実現するには、電磁波の伝播方向 に、物理的な周期性を与える必要がある。例えば、中心に 穴の開いた金属の仕切を,導波管の軸方向へ周期的に挿入 すると, 仕切の穴の近傍に遅波が形成されることが知られ ている(Fig. 1)。この場合,電子ビームは遅波構造の近傍 に入射され、電磁波の位相速度とほぼ等しくなる様に、並 進速度が調節される。すると電子は、波動電場により加速 あるいは減速を受けた結果、波動電場の特定の位相へ集群 される。波動電場と相互作用する電子の過半数が、定常的 に減速される位相へ集群される様に調節すると、電子ビー ムから遅波構造上の電磁波への,正味のエネルギー変換が 起こる。このとき、電子ビームから電磁波へ変換されるエ ネルギーは、電流ベクトルIと波動電場ベクトルEのス

放射光 May 2021 Vol.34 No.3 ● 175

Fig. 1 Schematic of a slow-wave device.

カラー積**I・E**によって評価される。

一方,遅波構造には、その構造的な制約に起因する難点 が存在する。まず、空間的な周期構造は、励起される遅波 の波長程度の寸法としなければならない。そのため、周波 数の増加にともない微細化が難しくなる。また、励起され る遅波の電磁界は周期構造上に局在的となり、そこから離 れるにしたがって単調に減少するため、電子ビームと電磁 波が相互作用する空間の体積を大きく確保することが出来 ない。以上の理由から、遅波構造を利用するマイクロ波管 では、高周波数化と大電力化ともに限界があり、テラヘル ツギャップを埋めることは難しいのが現状である。

2.2 ジャイロトロンの構造

ジャイロトロンの構造を Fig. 2 に示す。管の主な構成要 素は、電子ビームを生成する電子銃、電子と波動電場を相 互作用させるための円筒状の空胴共振器、発振した電磁波 の空間分布を整えるためのモード変換器(無い場合もあ る)、電子ビームを捕集するコレクタ、そして電磁波を管 の外部へ放射するための真空窓である。管の内部は、ター ボ分子ポンプやイオンポンプにより常時排気され、10⁻⁵ Pa 程度より良い高真空の状態が維持されている。管はマ グネットに挿入され、電子銃で生成される中空状の電子 ビームが、磁力線に巻きついてサイクロトロン運動しなが ら空胴共振器へ入る構造となっている。電子ビームのエネ ルギーレンジは、多くの場合10~100 keV 程度であり、 要求出力に応じて調節される。

ジャイロトロンは、円形導波管の中を伝播する速波の一 っである TE (Transverse Electric) モードと、電子ビー ムのサイクロトロン運動を同期させて発振を得る。TE モードは、その名のとおり横方向(管軸に垂直な方向)の 電場成分をもつ構造の波動であり、管軸の方向には電場が 無い。TE モードの電場と効率よく結合する(*I・E*の値 が大きくなる)電子を作るために、円筒状の空胴に対して 同軸となるように磁場が与えられる。この円筒状の空胴 へ、サイクロトロン運動する電子ビームを入射すれば、電 子は TE モードの電場と同じ方向の速度成分をもつことに

Fig. 2 Schematic drawing of a gyrotron with quasi-optical mode converter.

なる。

2.3 空胴共振器の形成

Fig. 3に,導波管の中を伝播するモードの分散関係(角 周波数 ω と波数 k の関係)を示す。円形導波管では径方 向に境界が存在し,径方向の波動電界の分布はベッセル関 数で表わされる。そのため分散関係も,真空中の表式 ω = ck (c は光速)から変形を受け,式(1)のようになる。 ここで, R_c は円形導波管の半径, k_{\parallel} は軸方向の波数であ る。また $\chi'_{m,n}$ は m 次第一種ベッセル関数の導関数の,零 でない n 番目の零点であり,モードによって固有の値を とる。この波動電場の強度は,管軸に垂直な断面内で,方 位角方向に 2m 個の山,半径方向に n 個の山を持つ分布と なる。式(1)が表す分散関係(**Fig. 3**中の破線)へ漸近する。 **Fig. 3**より,導波管モードは,その位相速度 ω/k_{\parallel} が常に 光速よりも大きく,速波であることがわかる。

$$\omega = c_{\sqrt{(\chi'_{\rm m,n}/R_{\rm C})^2 + k_{\parallel}^2}} \tag{1}$$

電磁波を発振させるためには、電磁波を閉じ込める構造 (共振器)を作る必要がある(Fig. 4)。最も簡単な共振器 の構造は閉じた空胴であるが、それでは電子ビームを入射 できず電磁波を出力することもできない。両端が解放され

Fig. 3 Dispersion diagram for the case of fast-wave interactions (gyrotron and gyro-BWO).

Fig. 4 Geometry of a cavity resonator, and schematic representation of a helical trajectory of injected electrons.

た円筒の空胴に電磁波を閉じ込めるため、まず円筒空胴の 電子銃側の端部が、ダウンテーパとして小径化されてい る。このような配位では、式(1)において $k_{\parallel} \approx 0$ となる遮 断領域に近い周波数の電磁波は、電子銃側へは伝播できず に全反射となる。加えてコレクタ側の端部をアップテーパ とし、波動インピーダンスの不整合をつくることで、コレ クタ側へ伝播する電磁波の一部が反射される。このよう に、空胴の両端部での反射により定在波が形成されて電磁 エネルギーが蓄積されるため、空胴は両端部が閉じていな くとも共振器として機能する。この場合、長さ $L_{\rm C}$ の空胴 に閉じ込められる電磁波の軸方向波数は、 $k_{\parallel} = p\pi/L_{\rm C}$ (p は整数) で近似される。したがって発振周波数は、次式 (2)で計算される値にほぼ等しくなる。

$$\omega = c \sqrt{(\chi'_{\rm m, n}/R_{\rm C})^2 + (p\pi/L_{\rm C})^2}$$
(2)

2.4 電子サイクロトロン共鳴メーザー

電子ビームを共振器内のTEモードと効率よく結合させるには、横方向の波動電場と電子の振動を、ほぼ同期させる必要がある。共振器へ入射される電子は、相対論効果が考慮された角周波数 ω_{ce}でサイクロトロン運動し、速度

 v_{\parallel} で管軸の方向へ運動するので、ドップラーシフト $k_{\parallel}v_{\parallel}$ を考慮した同期条件は、式(3)で表わされる。

$$\omega = \mathbf{s}\omega_{\rm ce} + k_{\parallel}v_{\parallel} \tag{3}$$

式(3)の右辺にある整数sは、可能のかぎり1として設計 され、その場合の発振は基本波発振と呼ばれる。一方、s =2,3,…の場合にも電子ビームを共振器モードへ結合さ せることが可能で、それぞれ二次高調波発振、三次高調波 発振、…と呼ばれる。電子ビームは、式(2)と(3)そして $k_{\parallel} \approx 0$ を満たすように調節される。したがって、ジャイロ トロンの発振周波数は、Fig.3に描かれた式(2)の曲線 と、式(3)の直線の交点近傍の ω に対応する。共振器に入 射された電子は、TEモードの電場により加速あるいは減 速される。電子の速度が増/減すると相対論効果によって ω_{ce} が減/増し、その結果、電子は波動電場の特定の位相 へ集群される。そして波動電場と相互作用する電子の過半 数が、定常的に減速される位相へ集群されるとき、電子 ビームからTEモードへの、正味のエネルギー変換が起こ る(電子サイクロトロン共鳴メーザー)。

前節で述べたように、共振器内のモードは径方向に固有 の電力分布をもつため、電子ビームには最適な入射径が存 在する(**Fig. 4**の右側を参照)。一般的に電子銃には、環状 のビームを生成可能なマグネトロン入射型が用いられる。 この電子銃には、電子ビームの電圧、電流、共振器への入 射径、そして磁力線に平行な方向の速度 v_{\parallel} に対する垂直 方向の速度 v_{\perp} の比(速度ピッチ因子: $\alpha = v_{\perp}/v_{\parallel}$)を変え る機能があり、発振効率を調節することが可能である。

以上のように、ジャイロトロンでは、波動電場の変化に 電子のサイクロトロン運動を結合させて発振を得る。この 場合、管軸方向の電子の速度 v₁と電磁波の位相速度 ω/k₁ を一致させる必要はなく、故に遅波構造は不要である。そ のため、高周波数化のために共振器の構造が複雑化するこ とはない。また、波動電場が共振器壁の近傍に局在しない モードを選択することで、電子ビームと波動電場の結合領 域を大きく確保することが出来る。すなわち、高周波数化 と大電力化を同時に狙うことが可能である。

2.5 発振周波数の可変性

発振周波数を変更するには、主に次の三つの方法があ る。一つ目は、式(2)の $\chi'_{m,n}$ を変える、つまり m と n の 異なる TE モードを発振させる方法である。共振器の横方 向に存在する境界のために、TE モードの空間構造(m と n)の変化は離散的となる。そのため $\chi'_{m,n}$ つまり周波数の 変化もまた、離散的となる。この場合、異なる TE_{m,n} モードへ結合させるべく、電子ビームの諸量を大きく変え る必要がある。しかし、多くの周波数での発振を念頭にお いて電子銃を設計することで¹²⁾、多くのモードに対して 同程度の発振効率を得ることが可能である¹³⁾。 二つ目は、共振器内の磁場強度を増加してサイクロトロ ン角周波数 ω_{ce} を増やし、**Fig.3**における曲線と直線の交 点●を、→○で表すように変える方法である。その際、磁 場強度の変化に伴って交点○の座標 ω が連続的に変化す るため、発振周波数を連続的に調節することが可能であ る。ただし、電子銃側への波動伝播が遮断となる条件(k_{\parallel} $\cong 0$)を満たすために、周波数の可変幅は狭い。この発振 は、○の座標である k_{\parallel} が負の値をとることから、ジャイ 口後進波発振と呼ばれている。この場合、周波数の連続変 化を担うのは、式(1)の k_{\parallel} または式(2)の p であり、 $\chi'_{n,n}$ (横方向の波動の構造) は変化しない。閉空胴の場合には p が整数となるため、周波数の変化も離散的となる。しか し、開空胴では軸方向の境界が不確定的であり、 k_{\parallel} には 連続的な変化が許容される¹⁴。

周波数を変更する三つ目の方法は、高調波発振の採用で ある。式(3)のs=1の発振(基本波発振)に対し, s=2 の発振(二次高調波発振)は、ほぼ半分の磁場で実現する ことができる。そのため、ジャイロトロンの高周波数化を 実現する高調波発振が精力的に研究されている¹⁵⁾。高調 波発振では、サイクロトロン運動の一周期において、電子 は多極の電場を感じ、必ず加速と減速の両方を受ける。こ のとき、もし電子の感ずる電場が空間的に一様であるなら ば、電子群の加減速の度合いは等しくなり、電場との正味 のエネルギー授受は発生しない。しかし、有限のラーモア 半径をもつ電子が、空間的に不均一な電場を通過する場合 には、電子の回転軌道に沿った*I*・*E*の積分値が有限とな る状況を実現でき(有限ラーモア半径効果),発振をうる ことができる。一方、電子と波動の同期性は低いので、高 調波発振の効率は基本波発振に比して極端に落ちる。ま た、次節で述べるモード競合の問題により、単一モードで の安定発振の実現が難しいという問題もある。

遠赤センターで得られた1THz 超のジャイロトロン発 振は、液体ヘリウムでの冷却を要する20Tの超伝導マグ ネットを用いて、二次高調波発振にて実現されたものであ る¹⁰⁾。光源としての実用化を図るには、利便性の観点か ら無冷媒の超伝導マグネットを採用することが望ましい が、現時点で市場から入手可能なものは15Tが上限とな っている。遠赤センターでは、国際共同研究の枠組みのも と、無冷媒の15T超伝導マグネットを用いてs=3の発振 (三次高調波発振)による高周波数化の研究も進められて いる¹⁶。

2.6 高調波発振とモード競合

高周波数化のために高調波発振が希求されるが,高調波 の安定発振をうるには,解決すべき困難な課題がある。電 子サイクロトロン共鳴メーザーの発現において,式(2)と (3)の ω には,常に幾ばくかの不一致がある。そのため, 周波数($\chi'_{m,n}$)の近い TE_{m,n}モードが複数存在すると, それらは同時に発振する可能性がある。このとき,電子 ビームは複数のモードとエネルギー授受し、その時間発展 に依存して、どのモードに対して位相集群するかが決ま る。このように、複数のモードが電子ビームエネルギーを 奪い合う現象を、モード競合と呼ぶ。特に高調波発振で は、基本波発振に比して電子ビームとモードの結合度が極 端に低いため、基本波発振するモードとの競合の回避・抑 制が必要となる。

Fig. 5に,二次高調波発振におけるモード競合の例を示 $g^{17)}$ 。これは,周波数389 GHz で出力100 kW を実現すべ く開発された管に対する,発振シミュレーションの一部で ある。この管は,TE_{17,2}モードの二次高調波発振を狙っ て設計されたが,近い周波数で二次高調波発振するモード (TE_{3,7},TE_{1,8},TE_{8,5}) との競合,そして約半分の周波数 で基本波発振するTE_{4,3}モードとの競合が発振実験にお いて観測された。**Fig. 5**に示されるように,ある運転の設 定において,TE_{17,2}モードは他の二次高調波発振との競 合には勝つ。しかし最終的には,基本波発振するTE_{4,3} モードとの競合に負け,目標に対して一桁ほど低い電力で しか発振しないことがわかる。

モード競合を回避するために、共振器の設計にあたって は、隣接するモードと X^{m,n}の差異が大きい(孤立度の高 い)モードが選ばれる。その際、電子ビームの最適入射半 径(**Fig. 4**参照)が、隣接するモードと大きく異なってい ることも重要である。また、運転時の印加電圧の時間変化 を調節し、定常発振に至るまでの過渡応答(電子の位相集 群)を制御することも有効とされる。一方、大電流の電子 ビームを長時間生成する高出力・長パルス運転では、僅か な不安定性がモード競合を誘発する場合もある。特に、高 調波発振は効率が低いために、モード競合を完全に回避し て大電力で発振させることは極めて難しい。高調波発振に 対しては、共振器の形¹⁸⁾や電子ビーム¹⁹⁾に工夫を施すな どの方法も考えられているが、確立には至っていない。故 に、テラヘルツを超える周波数を基本波発振させることが 望ましいが、それには更に強力な磁場を生成できる無冷媒

Fig. 5 A simulation result showing output power as a function of time for a $TE_{17, 2}$ gyrotron considering the competing modes.

Fig. 6 Schematic of a Magnetron Injection Gun (MIG).

マグネットの開発を待たねばならない。

2.7 マグネトロン入射型電子銃

Fig. 6に、電子銃の構造を示す。マグネットが作る磁場 と同軸に陰極と陽極が配置され、磁場中で熱電子を加速す る仕組みとなっている。マグネトロンの場合、電子は磁場 と垂直な方向に加速される。一方、本電子銃では、電子を 放出する面が磁場に対し傾斜していることから、螺旋運動 しながら軸方向へ進行する電子ビームが形成される。この ように、マグネトロンと類似の構造をもつことから、節題 の呼称がある。

共振器へ環状の電子ビームを入射するために,電子放出 面は帯状になっている。電子放出帯の半径を*R*_K,電子放 出面上の磁場を*B*_K,共振器内の磁場を*B*_Cとおくと,磁 束の保存を表す式(4)から,共振器への電子ビームの入射 半径*R*_Bが求められる。

$$R_{\rm B} = R_{\rm K} \sqrt{B_{\rm K}/B_{\rm C}} \tag{4}$$

Fig. 2に示す電子銃コイルを用いて $B_{\rm K}$ を変えることで、 電子ビームの磁気圧縮比($B_{\rm C}/B_{\rm K}$)が変わり、 $R_{\rm B}$ を調節 することができる。また、陰極の電位により電子ビームエ ネルギーを、陰極と陽極の電位差により速度ピッチ因子 α (= v_{\perp}/v_{\parallel})を、それぞれ独立に調節することができる。

熱電子放出帯の材料には、仕事関数の低い Ba 化合物を 含浸した多孔質タングステンが広く用いられており、約 1000℃で数 A/cm² の電流が得られる。陰極の内部に設置 されているヒータへの投入電力により、電子ビーム電流が 調節される。

高効率の発振を実現するためには、波動と電子の結合度 が大きくなる狭い空間領域へ(Fig. 4の右側を参照)、 v_{\perp} の成分(速度ピッチ因子 α)が大きく,速度分散の小さい 電子ビームを入射する必要がある。したがって,まず電子 ビームの径方向の厚さを,出来るだけ薄くする必要がある。 一方,電子ビームの電荷密度が大きくなると,内部に形 成される静電ポテンシャルの勾配によって,電子の速度分 散が増える(空間電荷効果)。結果として生ずる速度ピッ チ因子 αの大きな電子は,磁気圧縮の過程でミラー反射 され電子銃側へ戻ることになる。その一部は,陰極の静電 ポテンシャルにより更に反射されて,ビームトンネルにて 補足粒子となり,空間電荷効果による電子ビームの劣化を 助長することになる。

この空間電荷効果の抑制が,電子銃の設計における主な 課題となる。その際,ビーム内の電子軌道が交差すること のない層状流を形成し,電子ビーム断面内の電荷密度を均 一化する事が重要である。Fig.6中の陰極と陽極の複雑な 形状は,電子ビーム内の静電ポテンシャル分布を調節する ためのものであり,層状流の形成に必要となる静電ポテン シャルの分布が研究されている^{20,21})。

2.8 モード変換器

空胴共振器で励振されるモードは、ほぼ遮断 $(k_{\parallel}=0)$ の状態にあるが、コレクタ側のテーパにより導波管の半径が $R_{\rm C}$ から $R_{\rm W}$ へ拡大されると、伝播にともなって軸方向の波数 k_{\parallel} が大きくなる (Fig. 7a)。このとき、管軸に対する伝播角 Ψ は、 $R_{\rm C}$ と $R_{\rm W}$ の遮断波数の比から、次式(5)で表現される。

$$\Psi = \sin^{-1}(R_{\rm C}/R_{\rm W}) \tag{5}$$

純粋な導波管モードは、平面波の合成として、幾何光学 的に扱うことができる。円形導波管における $TE_{m,n}$ モー ド (m \neq 0) は、壁に沿って螺旋状に反射しながら進む光 線の集合で表現され、半径 $R_c \ge R_w$ の間の領域に、一様 の強度分布をもって存在する (Fig. 7b)。そして、Fig. 7c のような導波管壁の展開図において、壁面上に描かれた一 つの平行四辺形 (灰色の領域)の内部で、すべての光線が 反射することが示される。そのため、Fig. 7c に太実線で表 示した境界で導波管を切断して、一つの平行四辺形を開口 とすると、すべての光線は横方向の比較的狭い範囲に放射 される (Fig. 7d)。この横方向の放射角 θ は、次式(6)で与 えられる。

$$\theta = \cos^{-1}(\mathbf{m}/\boldsymbol{\chi}_{\mathrm{m,n}}') \tag{6}$$

導波管の開口に対して準放物面鏡を設置すると,開口から放射された光線の集合を,直線偏波の平行ビームへ変換することができる。更に,楕円体鏡を用いて空間分布を調節し,ガウスビームに近い構造をもつ放射波が形成される。このように,モード変換器を内蔵することで,電子

Fig. 7 (a) Ray representation for the wave propagation near cutoff in the cavity and (b) far from cutoff in the output waveguide. (c) Unfolded launcher wall. The edge of launcher-cut is indicated. (b) Vlasov-type launcher.

ビームと電磁波を分離することができ,コレクタを自由に 設計することが可能となる。またガウスビームは,長距離 の低損失伝送や照射分布の調節が比較的容易であり,応用 の観点からも有利である。

モード変換器を内蔵しない管では、半径 R_W の導波管壁 が、すべての電子軌道と交差するように軸方向へ充分に延 長され、コレクタとしても利用される。そして電子ビーム の到達しない導波管端部の垂直断面内に真空窓が設けられ る。このとき真空窓からの放射波は、多くの場合、軸上で 電場強度が零となり径方向にも複雑な構造をもつ中空の強 度分布をもつ。そのため、放射波の応用には不便である。 一方、この放射分布は、共振器内の波動の構造を反映する ため、発振物理の研究に良く利用される。遠赤センターで は、はじめにモード変換器の無い管で発振の実証実験を行 い、その後モード変換器内蔵型²²⁾を作って応用研究へ投 入することが多い。

3. 遠赤センターにおけるジャイロトロン 開発と応用

3.1 高周波数化および高度化

遠赤センターの設立者である出原らにより、1980年代

からジャイロトロンの高周波数化が探求され,Gyrotron FU Series と呼ばれる多数の管が開発されている。これら の管によって達成された周波数は,38 GHz から約1010 GHz までの広範囲にわたる。そして,基本波発振では数 100 W から数+kW,二次高調波発振では数+W から数 kW の高出力が得られている²³⁾。これらはモード変換器を 内蔵していないが,核融合プラズマの散乱計測²⁴⁾,サブ ミリ波領域の電子スピン共鳴(ESR)^{25,26)},局所加熱によ る癌治療²⁷⁾,セラミックスのミリ波焼結²⁸⁾,高分解能の 動的核偏極核磁気共鳴分光(DNP/NMR)による蛋白質 の構造解析²⁹⁾などの光源として利用実績がある。

続いて2010年代に,モード変換器の内蔵をはじめとす る高度化が図られ^{13,15,21,22,30-33)},約460 GHz までの周波数 において,ガウスビーム放射可能な管が実現されている。 出力は,数十 W 程度から,パルス運転では最大数百 kW を得られる管も存在する^{21,33)}。その結果,DNP/NMR 研 究の更なる進展³⁴⁾に加え,ポジトロニウム超微細構造の 直接測定³⁵⁾,核融合プラズマ中のイオンの速度分布を調 べる協同トムソン散乱計測³⁶⁾,大気放電現象の研究³⁷⁾, 生体に関連する物質の制御³⁸⁻⁴⁰⁾など,新たな応用分野も 開拓されつつある。

この領域の電磁波は,光子エネルギーが低いため,例え ば生体関連物質へ照射するとき,分子構造を電離破壊する 心配がない。他方,分子間の振動や,内部構造の回転運動 などの特性的な周波数が内在していることから,特定の反 応を狙って制御できる可能性が示唆されている³⁸⁾。分子 構造の熱破壊に至らない範囲で電磁波を照射して変化を観 察し,利用可能な現象を探索する実験が進められており, 今後の発展が期待されている。

一方,上述の管は,基本的に単一周波数での発振を前提 とし,開発されてきた。中には,ジャイロ後進波発振を利 用した周波数連続可変管も存在するが,その可変範囲は狭 い。そのため,発振周波数を様々に変えて実験を行う場合 には,異なる管あるいは内部の共振器のみを交換するとい う運用が求められ,汎用性の向上が課題となっている。今 後,応用分野の拡大にともない,とくに周波数と出力を大 きく変更可能な管が必要となることは必至である。

3.2 ガウスビーム放射が可能な多周波数発振管の開発

広範な分野での応用をめざして、約162~265 GHz の範 囲にて、10段階で周波数可変かつガウスビーム放射が可 能な、基本波発振管が開発された¹³⁾ (Fig. 8)。これは、共 振器および電子銃部の磁場を広い範囲で変え、電子ビーム のサイクロトロン周波数および入射半径を調節し、異なる TE_{m,n}モードを選択的に発振させるものである (Table 1)。 この管の実現には、広い運転パラメタ領域において、速度 分散を低く抑えつつ大きな速度ピッチ因子の電子ビームを 生成できる電子銃が必要である。加えて、一つのモード変 換器により、すべての共振器モードをガウスビームへ変換

Fig. 8 Photograph of a multiple-frequency gyrotron with gaussian beam output.

 Table 1
 Characteristics of selected modes for a multiple-frequency gyrotron with gaussian beam output.

Mode	Freq. [GHz]	<i>B</i> _C [T]	R _B [mm]	$B_{\rm C}/B_{\rm K}$	<i>θ</i> [deg.]
TE _{10, 6}	265.0	9.71	1.93	42.0	70.9
TE _{9,6}	253.6	9.29	1.81	47.7	72.1
TE _{8,6}	242.1	8.86	1.69	54.7	73.3
TE _{7,6}	230.4	8.44	1.55	65.0	74.7
TE _{9,5}	224.7	8.23	2.05	37.2	69.7
TE _{8,5}	213.4	7.82	1.91	42.8	71.0
TE _{7,5}	202.0	7.39	1.77	49.9	72.5
TE _{6,5}	190.5	6.97	1.61	60.3	74.1
TE _{7,4}	173.2	6.35	2.07	36.5	69.5
TE _{6,4}	161.9	5.94	1.89	43.7	71.2

できなければならない。

真空管内に設置されたモード変換器の部品形状を変える 事はできない。したがって,発振したモードが全てガウス ビームに近い構造へ変換される状況を実現するには,それ らの放射角 $(m/\chi'_{m,n})$ が大体同じである必要がある。 Table 1に示すように,この管では θ ~72°となるモードが 選定されている。真空窓に面した楕円体鏡は,すべての共 振器モードがガウシアンに近い電力分布で放射されるよう に最適化される。

発振周波数の調節には、磁場分布の大きな変更をともない、電子ビームの軌道ならびに磁気圧縮比 ($B_{\rm C}/B_{\rm K}$)が大きく変化する。特に $B_{\rm C}/B_{\rm K}$ が50程度を超える状況では、

Fig. 9 (a) Two-stage cavity configuration. (b) Schematic and photograph of the gyrotron used for super multi-frequency oscillation.

空間電荷効果が大きくなり、磁気ミラー反射が発生しやす くなる。電子銃設計では、空間電荷の分布を可能の限り一 様とした層状電子流を形成することで、空間電荷効果の抑 制を図る必要がある。本管の開発にあたり、陰極電源の上 限設定(20 kV, 0.5 A)において、 $0.9 \le \alpha \le 1.5$ の範囲で $\Delta \alpha < 5\%$ となる非常に低分散の電子ビームを生成可能な電 子銃が設計されている¹²)。

発振実験により,ほぼすべての設計周波数において,1 kW 程度以上の出力が得られ,すべてガウスビームとして 出力されることが確認されている¹³)。この管は,100 GHz 超の無線通信等への利用に向けて,電磁波暴露に対する安 全性を評価する実験に使われている⁴¹)。また,同じ設計 思想のもと,270~420 GHz の範囲にて9段階で周波数可 変かつガウスビーム放射が可能な二次高調波発振管も開発 されている¹⁵)。

3.3 超多周波数発振管の開発

前節に示したとおり,一つの空胴共振器に励起しうる モードは数多く存在する。したがって,**Fig.9a**のように径 の異なる空胴(C1 と C2)を軸方向に連結すれば,励起可 能なモード(発振可能な周波数)が大きく増えると考えら れる。この二段の共振器を製作し,モード変換器の無い直 線型の管(**Fig.9b**)へ搭載して,基本波発振させる実験を 行った⁴²⁾。

その結果,単一の空胴共振器では実現し得ない,多数の モードの発振が確認されている(Fig. 10)。C1 と C2 の境 界における磁場強度を約4~8 T の範囲で変えるととも に,電子ビームのパラメタを最適化することで,約120~

Fig. 10 Measured oscillation frequencies as a function of the magnetic field strength in the cavity.

220 GHz の範囲において 5 GHz 程度の間隔で発振周波数 を変えることに成功している。Fig. 10中,○印でプロット したものが C1 で発振したモードの周波数,そして●印で プロットしたものが C2 で発振したモードの周波数であ る。また実線は,共振器内の磁場強度に対する電子サイク ロトロン周波数を表している。

加えて、ジャイロ後進波発振による、周波数の連続変化 も観測されている。この周波数の連続可変領域から、120 ~220 GHz の範囲における周波数包含率を求めると、約 30%となった。ある磁場において、C1 のモードとC2 の モードが同時発振する場合には、電子ビームの速度ピッチ 因子を調節することで、ほぼすべてのモードを選択的に励 起できることもわかっている。

すべてのモードに対し、その最大出力を測定したところ、数十W以上を得られることがわかった。共振器を多 段化することで、さらなる多周波数発振の実現が期待される。

4. まとめ

本稿では,福井大学・遠赤外領域開発研究センターにお けるジャイロトロン開発と,応用展開の現状について紹介 した。テラヘルツギャップを埋めるべく,高周波数化なら びに汎用性の向上を図り,現在,多くの周波数の電磁波が 利用可能な状態にある。ジャイロトロンは,比較的小規模 の設備で,高い出力を得られることから,適用可能な分野 は多岐に渡っている。

謝辞

本原稿の内容は,福井大学・遠赤外領域開発研究セン ターのジャイロトロン開発グループに所属する,立松芳典 教授,斉藤輝雄教授,福成雅史助教との,日々の共同研究 に基づくものである。また本稿を纏めるにあたり,内容の 構成に関して,同センター長の谷正彦教授から建設的な助 言を頂戴した。

参考文献

- 1) R. Q. Twiss: Aust. J. Phys. 11, 567 (1958).
- J. L. Hirshfield and J. M. Wachtel: Phys. Rev. Lett. 12, 533 (1964).
- V. A. Flyagin, A. V. Gaponov, I. Petelin *et al.*: IEEE Trans. Microwave Theor. Tech. 25, 514 (1977).
- 4) R. J. Temkin *et al.*: Journal of Magnetism and Magnetic Materials **11**, 368 (1979).
- 5) 田中茂利, 曄道恭: 応用物理 48, 751 (1979).
- 6) K. Sakamoto et al.: Phys. Rev. Lett. 73, 3532 (1994).
- 7) K. Sakamoto: Rev. Sci. Instrum. **70**, 208 (1999).
- 8) K. Sakamoto *et al.*: Nat. Phys. **3**, 411 (2007).
- 9) T. Saito et al.: J. Plasma Fusion Res. 84, 853 (2008).
- 10) T. Idehara: Int. J. Infrared Mili Waves 27, 319 (2006).
- J. W. Gewartowski and H. A. Watson: "Principles of Electron Tubes", Bell Laboratories S. (1965).
- Y. Yamaguchi et al.: Int. Conf. on IRMMW-THz 2014 Ws-28
- T. Tatematsu *et al.*: J Infrared Milli Terahz Waves 36, 697 (2015).
- 14) R. Ikeda et al.: Plasma Fusion Res. 9, 1206058 (2014).
- T. Tatematsu *et al.*: J Infrared Milli Terahz Waves 41, 576 (2020).
- O. Dumbrajs and T. Idehara: J Infrared Milli Terahz Waves 39, 177 (2018).
- 17) T. Saito et al.: Phys. Rev. Lett. 109, 155001 (2012).
- M. M. Melnikova *et al.*: IEEE Transactions on Electron Devices 64, 5141 (2017).
- 19) T. Idehara *et al.*: Int. Conf. on IRMMW-THz 2017 RB2.2
- 20) Y. Yamaguchi et al.: Physics of plasmas 19, 113113 (2012).
- 21) Y. Yamaguchi et al.: Nucl. Fusion 55, 013002 (2015).
- Y. Tatematsu *et al.*: J Infrared Milli Terahz Waves 33, 292 (2012).
- T Idehara and S. Sabchevski: J Infrared Milli Terahz Waves 33, 667 (2012).
- 24) T. Idehara and T. Tatsukawa: Journal of Applied Physics 67, 7086 (1990).
- 25) T. Tatsukawa et al.: J Infrared Milli Waves 16, 293 (1995).
- 26) S. Mitsudo et al.: J Infrared Milli Waves 21, 661 (2000).
- 27) T. Tatsukawa et al.: Jpn. J. Appl. Phys. 41, 5486 (2002).
- I. N. Sudiana et al.: J Infrared Milli Terahz Waves 34, 627 (2013).
- Y. Matsuki *et al.*: J Infrared Milli Terahz Waves 33, 745 (2012).
- Y. Tatematsu *et al.*: J Infrared Milli Terahz Waves 35, 169 (2014).
- T. Idehara *et al.*: J Infrared Milli Terahz Waves 36, 613 (2015).
- 32) E. M. Khutoryan *et al.*: J Infrared Milli Terahz Waves 36, 1157 (2015).
- Y. Yamaguchi *et al.*: Journal of Instrumentation 10, C10002 (2015).
- 34) K. Ueda *et al.*: J Infrared Milli Terahz Waves 37, 825 (2016).
- 35) A. Miyazaki *et al.*: Prog. Theor. Experim. Phys. 2015, 011C011 (2015).
- 36) T. Saito *et al.*: Plasma and Fusion Research 14, 1406104 (2019).

- 37) M. Fukunari et al.: Scientific Reports 9, 17972 (2019).
- 38) S. Yamazaki et al.: Scientific Reports 8, 9990 (2018).
- T. Kawasaki *et al.*: Biomedical Optics Express **11**, 5341 (2020).
- 40) Y. Tsunawaki *et al.*: J Infrared Milli Terahz Waves (2021) DOI: 10.1007/s10762-021-00774-x
- M. Kojima *et al.*: J Infrared Milli Terahz Waves 41, 834 (2020).
- 42) Y. Yamaguchi *et al.*: IEEE Electron Device Letters **41**, 1241 (2020).

著者紹介

山口裕資

福井大学遠赤外領域開発研究センター 助 教

E-mail: y-yama@fir.u-fukui.ac.jp 専門:高周波工学,電子ビーム工学 **[略歴]**

2007年筑波大学大学院,数理物質科学研 究科,電子・物理工学専攻,博士課程修 了,博士(工学)。2007年-2010年,筑波 大学プラズマ研究センター,研究機関研究 員。2010年,福井大学遠赤外領域開発研 究センター,研究機関研究員。2013年, 同特命助教。2017年より現職。

Development and applications of high-frequency gyrotrons at FIR-UF

Yuusuke YAMAGUCHI

Research Center for Development of Far-Infrared Region, University of Fukui, 3–9–1 Bunkyo, Fukui 910–8507, Japan

Abstract Gyrotrons are known as vacuum electron tubes capable of providing high-power continuous radiation in the terahertz frequency range. At University of Fukui, advanced research on gyrotrons has been carried out to contribute to the development of electromagnetic wave sources in this frequency range. In this paper, the mechanism of the gyrotron is introduced, and the current status of its development and applications are described.